Design and Implementation of an Anomaly Detection System

Luca Deri <deri@ntop.org>
Gaia Maselli <maselli@di.unipi.it>
Stefano Suin <stefano@unipi.it>
Goal of This Work

• In every network there are some global variables that can be profitably used for detecting network anomalies, regardless of the type of network users and equipment.

• As most of the relations among these variables are fixed, it is possible to define generic network rules for automatically detecting selected network anomalies.
How N-IDS Systems Work [1/2]

• Signature detection systems use patterns of well-known attacks or weak spots of the system to match and identify known intrusions.

• Advantage: known attacks are detected efficiently.

• Disadvantage: lack of the ability to detect new attacks
How N-IDS Systems Work [2/2]

• Anomaly detection systems flag observed activities that deviate significantly from the established normal usage profiles as anomalies: something that is abnormal is probably suspicious.

• Advantage: it does not require prior knowledge of the intrusion so it can detect new intrusions.

• Disadvantage: no clear definition of an attacks hence it can have high false positive rate.
Defining a new Type of Anomaly Detection System [1/3]

- Various experiments performed on different networks confirmed the presence of some similarities on traffic.
Defining a new Type of Anomaly Detection System [2/3]

- Simple bytes/packets curves are not very reliable for detecting networks problems, as they can present some peaks caused by various reasons (e.g. a multicast transmission).
Defining a new Type of Anomaly Detection System [3/3]

The authors decided to investigate whether it was possible to:

• Identify some selected traffic parameters that can be profitably used to model network traffic behaviour.

• Define traffic rules so that when such rules are violated there is necessarily a network anomaly (e.g. an abnormal network activity).
What is an Anomaly?

The deviation from the network’s expected behaviour that is defined by considering two kinds of knowledge:

• IP protocol specifications contained in RFCs, that needs to be satisfied by every host and network (static knowledge).

• Statistical traffic analysis that varies according to network characteristics and type of users (dynamic knowledge).
Building Static Knowledge

- Classification of effects on the network of known network security violations.
- IP protocol dissection (RFCs).
- Network traffic monitoring parameters used by monitoring applications (e.g. RMON)
- Experience: survey of parameters checked by network administrators
Building Dynamic Knowledge

Produce a traffic model for each monitored asset that includes:

- List of provided network services.
- Thresholds for some specific traffic (e.g. SYN pkt ratio, # concurrent outgoing connections).
- A security index that identifies how “safe” is an host.
Some Common Traffic Parameters

- ICMP ECHO request/response ratio
- ICMP Destination/Port Unreachable
- # SYN Pkts vs. # Active TCP Connections
- Suspicious Pkts (e.g. out of sequence)
- Fragments percentage
- Traffic from/to diagnostic ports (e.g. ident)
- TCP connections with no data exchanged
Validation Playground [1/2]

- Extension to ntop for accounting selected traffic parameters and calculating security thresholds.
- Test on the Unipi backbone
UNIVERSITY of PISA network traffic monitor

http://mrtg.unipi.it
Evaluation [1/3]

- Anomaly detection based on expected behaviour and the study of RFCs, guarantees a better longevity with respect to detection mechanisms based on pattern matching and signature detection.
- The ADS is effective in many situations where a firewall or an intrusion detection system fail (e.g. a cracker gain host access by means of a buffer overflow).
- Attacks, when classified in terms of anomaly categories, are very few with respect to the large number of signatures and patterns that similar solutions need to handle.
Evaluation [2/3]

• # of knowledge rules you use:
 – ~50 rules per host
 – ~20 global rules (applied to the whole net)

• Rate of false positives
 – < 10% on “known” hosts
 – “unknown hosts”: investigation needed (informational)

• What is normal behaviour?
 – Thresholds for servers/workstations/p2p’s
Evaluation [3/3]

The study of the results produced by the ADS can be very well used for:

• Network bandwidth optimisation.
• Detection of network bandwidth killers.
• Avoidance of unwanted protocols.
• Network misconfiguration.
• Unwanted server activity detection.
• TCP/IP stack tuning based on the distribution of TCP connection number, flags (e.g. RST, SYN), and latency.
Ongoing Work

• pTop (S.Suin and D.Vaghetto):
 – Realtime traffic analyzer that is activated on demand when a potential problem is detected
 – Data storage on a MySQL database
 – Web interface for access to monitoring data