

Inteligent data center/next generation data center

Internet Users' Conference - CUC 2005 Dubrovnik, November 21.-23., 2005.

Wednesday, 23.11.2005. 11:00-13:00

Josip Zimet Cisco Systems

Session Number Presentation_ID

List of architectures

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved

Architectures ...

2004/2005 2001/2002 2002/2003 2005/2006 2000/2001 SDN SAFE V3PN SONA **AVVID** -Integrated security -sla - security -standardization - sla - collaborative security systems - virtualization -security -adaptiive threat defense

Next generation switches :

 $1900 \rightarrow 2900 \text{XL} \rightarrow 2950/3550 \rightarrow 500/2960/3560$

Next Generation routers :

 $2500 \rightarrow 2600 \rightarrow 2600 \text{XM} \rightarrow 2800 \text{ ISR}$

Next generation PIX :

PIX $5xx \rightarrow PIX 5xxE \rightarrow ASA 55xx$

<u>Next generation IDS, Next generation Wireless ...</u>

List of acquisitions ...

Acquisitions related to the DNA ...

DNA

Presentation ID

Data Center DNA Products

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved

Cisco DNA Infrastructure Evolution/Roadmap

The Big Picture - The Cisco Data Center

Business Ready Data Center Architecture to Topology

Presentation_ID

Enterprise Data Center Network Topology

The Evolution of the Data Center

Session Number Presentation_ID

12

Server Switching Architectural Evolution

The Evolution of the Data Center

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserve

The Evolution of the Data Center

Sorviooucere			
Layer	Cluster Mgmt	Cluster Mgmt	Virtualized Mgmt
Middleware	Data Middleware	Compute Middleware	Web Services
Lajor			
Resource Layer	Legacy Servers	Blade Servers	Compute-Network Farms
Network Layer	10/100/1000 Ether	net GigE/10G	GigE/40GigE/100GigE 2G/10G FC
	1990	2000	2010

CISCO CONFIDENTIAL

Cisco DNA Architecture

Session Number Presentation_ID

A New Category of Data Center Infrastructure-The Server Fabric Switch

Session Number Presentation ID

DNA Virtualization Vision

© 2005 Cisco Systems, Inc. All rights reser

What Makes The Server Fabric Switch Different?

High Performance Server-to-Server Interconnect

Policy-Based Dynamic Resource Mapping

Virtualization (I/O, Storage, <u>and</u> CPU)

Performance and Control

Session Number Presentation_ID

Server Fabric Switch Applications Why Performance <u>and</u> Control?

RDMA & OS Bypass, Kernel Bypass

Cluster Application Interconnect

Session Number Presentation_ID

InfiniBand Performance Measured Results

Session Number Presentation_ID

I/O Gateways for Network and Storage Eliminating Technology Islands

Programmability VFrame™

- Server Switch receives policy from VFrame[™] Director or 3rd party software.
- 2) Based on policy, Server Switch assembles the virtual server
 - Selects server(s) that meet minimum criteria (e.g. CPU, memory)
 - Boot server(s) over the network with appropriate app/os image
 - Creates virtual IPs in servers and maps to VLANs for client access.
 - Creates virtual HBAs in servers and maps to Zones, LUNs, and WWNNs for storage access

Session Number Presentation_ID

Grid or Utility Computing

Session Number Presentation_ID

VFrame

Session Number Presentation_ID

27

The Next Frontier: Datacenter Management Device and Service Provisioning + Virtualization

Session Number Presentation ID

Horizontal versus Vertical Provisioning

Session Number Presentation_ID

29

Datacenter Ecosystem

Session Number Presentation ID

What is InfiniBand?

- InfiniBand is a high speed low latency technology used to interconnect servers, storage and networks within the datacenter
- Standards Based InfiniBand Trade Association http://www.infinibandta.org
- Scalable Interconnect:
 - 1X = 2.5Gb/s (2Gb/s data)
 - 4X = 10Gb/s (8Gb/s data)
 - 12X = 30Gb/s (24Gb/s data)

High Performance Server Interconnect

- Industry Standard
- RDMA for Ultra-Low Latency
- 10Gbps Bandwidth (moving to 30Gbps)

Economics

Connection Oriented Control

Manageability

- Standard
- Connection Oriented
- Built-in Control
- Partitionable

- Boot Over IB
- Interconnect
 Agnostic
 Storage and I/O
 - -GigE, 10GigE, FC, iSCSI, etc.

Cluster Application Interconnect

Session Number Presentation_ID

Price / Performance Comparative

InfiniBand Offers the Best Price / Performance for HPC

	InfiniBand PCI-Express	Myrinet D	Myrinet E	10GbE	GbE	GbE/RNIC
Data Bandwidth (Large Messages)	950MB/s	245MB/s	495MB/s	900MB/s	100MB/s	100MB/s
MPI Latency (Small Messages)	5us	6.5us	5.7us	50us	50us	18us
HCA Cost (Street Price)	\$550	\$535	\$880	\$2K-\$5K	Free	\$500
Switch Port	\$250	\$400	\$400	\$2K-\$6K	\$100-\$300	\$100-\$300
Cable Cost (3m Street Price)	\$100	\$175	\$175	\$50	\$25	\$25

Note: MPI "User Space" to "User Space" latency – switch latency is less

* Myrinet pricing data from Myricom Web Site (Dec 2004) utilizing Myrinet's latest switches ** InfiniBand pricing data based on Topspin avg. sales price (Dec 2004) *** Myrinet, GigE, and IB performance data from independent June 2004 OSU study **** 10GigE and GigE Cost and Performance data from Cisco Internal document

InfiniBand Performance Measured Results

InfiniBand Protocol Summary

Protocol / Application	Summary	Application Example
IPoIB (IP over InfiniBand)	Enables IP-based applications to run over InfiniBand transport.	Standard IP-based applications. When used in conjunction with Ethernet Gateway, allows connectivity between IB network
SDP (Sockets Direct Protocol)	Accelerates sockets-based applications using RDMA.	and LAN Communication between database nodes and application nodes, as well as between database instances.
SRP (SCSI RDMA Protocol)	Allows InfiniBand-attached servers to utilize block storage devices.	When used in conjunction with the Fibre Channel gateway, allows connectivity between IB network and SAN.
uDAPL (Direct Access Programming Library)	Enables maximum advantage of RDMA flexible programming API.	Used for IPC communication between cluster nodes for Oracle 10G RAC.
MPI (Message Passing Interface)	Low latency protocol used widely in HPC environments.	HPC applications.

The InfiniBand Driver Architecture

IP over InfiniBand

- Transmission of IP over Infiniband
 - Use IB as a link layer for IP
 - Define data link and link layer address
 - Encapsulation for ARP, IPv4 and IPv6
 - Address resolution
 - Transport IP multicast over IB
- Provides highest level of application compatibility.
- Applications do not need to be re-written or re-compiled
- Standard IP utilities and applications work as usual:
 - Ifconfig, ping, telnet, File sharing (NFS, CIFS); Login access (ssh, telent, etc); Cluster heartbeat
 - DHCP over IB
 - IP over InfiniBand MIB

How IP over InfiniBand works

* Notes: Uses standard Berkeley TCP/IP libraries

Sockets Direct Protocol

- Sockets Direct Protocol
- Runs socket based TCP/IP traffic with TCP and copy offload
- Highly configurable:
 - By process
 - By port
 - By destination
 - By environment variable
- No application recompile or rework necessary
- Zero copy capability using Asynchronous I/O (AIO)

Tangible Benefits of Server Fabric Switching

- Purchase 20X more compute power for same dollars (pay as you grow, moore's law, expense vs capitalization)
- 50% cost savings from resource consolidation delivers instantaneous ROI (Single Server Fabric- eliminates adapter, cables, ports)
- Dramatically Reduce TCO Manage enterprise-wide Server GRID centrally (wire once, *control* servers over the network)
- **Provision** New Servers in seconds, not days (or weeks)
- Help Eliminate Server Downtime (Failover provision, add/remove I/O or storage bandwidth on the fly)
- Control Ballooning Investments in Real Estate, Power & Cooling

(capitalize on dense server packaging and Blade architectures)

• Political Power and "Self-Rule" for the Server Team (Eliminate dependence on other teams to get apps provisioned quickly)

Cisco DNA Impact : Improved Server Utilization

Session Number Presentation_ID

Dramatic Cisco DNA Impact: Application Acceleration Improvement on Response Times

Application	Software	Before	After	Transaction Time Reduction
Call center	PeopleSoft	63 sec	23 sec	□ 63% (□270%)
"JIT" manufacturing	SAP	76 sec	22 sec	□ 71% (□350%)
Store management	IBM WebSphere	46 sec	16 sec	□ 66% (□290%)
Claims management	IBM WebSphere	42 sec	19 sec	□ 55% (□220%)
Collaboration	Lotus iNotes	90 sec	28 sec	□ 68% (□320%)
Employee portal	Plumtree	204 sec	59 sec	□ 71% (□350%)
Portal consolidation	SunOne, Vignette	43 sec	6 sec	□ 85% (□670%)
Employee portal	PeopleSoft	103 sec	32 sec	□ 69% (□320%)
CRM	Siebel	389 sec	133 sec	□ 66% (□290%)

Notes: Bandwidth reduction averages 80-90%

All timings are customer-verified using either LoadRunner, FineGround AppScope, or in-house customer tools

Topspin Building Blocks

Gateway Modules

- InfiniBand to Ethernet
- InfiniBand to Fibre Channel

Host Channel Adapter (HCA) With upper layer protocols

- SRPSDP
- uDAPLMPI
- IPolB

Linux and Windows driver support

Integrated System and Fabric management

The Cisco SFS Product Line

Cisco InfiniBand Blade Switch Modules

For IBM eServer BladeCenter

- Plug one card into each server blade
- Plug one or two switch modules into chassis
- Each server blade gets one or two 1x IB (2.5Gbps) connections
- Target markets: HPC, Multifabric I/O (MFIO), On-Demand data centers
- See IBM Redbook for more details:

http://www.redbooks.ibm.com/redpieces/abstracts/REDP39 49.html?Open

 Plug one daughter card into each server blade

For Dell PowerEdge 1855 Blades

- Plug one or two pass through modules into chassis
- Each server blade gets one or two 4x (10Gbps) IB connections
- Target markets: HPC, Multifabric I/O (MFIO), Scalable Enterprise centers

Case Study: Leading Research Facility High Performance Computing Cluster

- Application:
 - High Performance
 Computing Cluster
 - Compute time outsourced to Commercial Enterprises (major oil & gas)
- Environment:
 - 520 Dell Servers
 - 3:1 Blocking ratio
 - 6x SFS 7008 (TS270)
 - 29x SFS 7000 (TS120)
- Benefits
 - Compelling Price & Performance
 - Measured MPI latency 5.2µs

Core Fabric: 6x SFS 7008 (TS270)

Case Study: Large Wall Street Bank Enterprise Grid Computing

• Application:

Replace proprietary platforms with standards-based components

Build scalable "on-demand" compute grid for financial applications

• Environment:

500+ Intel Servers per slice

Topspin Server Switch with Ethernet and Fibre Channel Gateways

Hitachi RAID Storage

SAN Switches

Ethernet Switches

Benefits:

20X Price/Performance Improvement over four years

30-50% Application Performance Improvement

Standards-based solution for on-demand computing

Environment that scales using 500-node building blocks

Case Study: Major System Vendor Utility Computing Service

• Application:

Build scalable "on-demand" compute service for enterprise customers (license \$/CPU)

Key initiatives around Financial Services and Energy verticals

Environment

1024x Sun V20z Nodes

34 TS270 Server Fabric Switches

Non-Blocking CLOS Network

8 TS360's with Gateways

Sun Storage

Enterprise-Class Reliability

• Benefits:

Ability to outsource computing services to many customers with common infrastructure

Case Study- Large Government Lab Worlds 2nd Largest Super Computer

- Application:
 - High Performance SuperComputing Cluster
- Environment:
 - 4096 Dell Servers
 - 50% Blocking Ratio
 - 8 TS 740s
 - 256 TS120s
- Benefits:
 - Compelling Price/Performance
 - Largest Cluster Ever Built (by approx. 2X)
 - Expected to be 2nd Largest Supercomputer in the world

Leading UK Telecom Provider Oracle 10g Deployment (BT)

- Broadband billing application
- 12 identical regional deployments
- Running Oracle 10g
- No single-point of failure
- Each server has a single HCA, with ports dual connected to two TS90s

Sandia National Labs – 4096 Nodes Cluster

- Application:
 - High Performance SuperComputing Cluster
- Environment:

4096 Dell Servers 50% Blocking Ratio 8 SFS 7048 256 SFS 7000's

• Benefits:

Compelling Price/Performance

Largest IB Cluster ever built

Expected to be 3rd Largest Supercomputer in the world

Oracle 10g: Broad Scope of IB Benefits

Bio-Informatics Cluster: 1,066 Node Supercomputer

1,066 Fully Non-Blocking Fault Tolerant IB Cluster

Key decision factors:

- Topspin benchmarked and tuned customer MPI application
- Best operational experience with large clusters best references
- "Rapid Service" architecture proved 2-min vs. 2-day MTTR.

Cisco InfiniBand Landscape Vendors working with Cisco Server Switches

Session Number Presentation ID

Topspin and Top Tier Server Vendors

Session Number Presentation_ID

Who Owns the Datacenter?

Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved.

Thank You!

Session Number Presentation_ID Cisco Public 58