
Flow measurements from the packet-switched
NREN PIONIER: technology and experience

.
Wiktor Procyk, Szymon Trocha

Poznan Supercomputing and Networking Center
Noskowskiego 12/14, 61704 Poznan, Poland

{wiktor.procyk, szymon.trocha} @man.poznan.pl

KEYWORDS:

sFlow, network management, rrd

ABSTRACT
In order to satisfy all the requirements computer

networks have to be monitored. Most modern network
devices support sFlow – a source of very detailed
information about traffic in the network, but only few,
mostly commercial, applications are able to use it. We
created a framework for flow measurement based on sFlow
and RoundRobinDatabase, so information can be easily
accessed by NOC and network administrators.

I. INTRODUCTION

During the recent years computer networks have
dramatically increased the core bandwidth. Widespread
Internet becomes more and more popular. All these
factors are conductive to the deployment of new services
like grids, videoconferencing, etc. But the bandwidth is
not everything that the today’s applications require. The
quality of service – latency, jitter, packet loss - becomes
equally important. Computer networks have to be
monitored and managed at every layer of ISO/OSI model
to satisfy all the requirements and expectations and to
provide service consistent with an appropriate service
level agreement (SLA) .

There are many multi-vendor network management
applications and measurement tools available on the
market and used by network administrators [1]. In
practice, many National Research and Education
Networks replace them with GNU GPL-based software
like MRTG [2] or Nagios [3] because of lower price and
more flexibility.

The trouble is that those tools still have poor support
for network layer.

The recent years of network operation have shown that
the monitoring of the network layer is a must, especially
in case of new services like digital channels. If there is
quality degradation in the network, it has to be
determined which part of the network it is responsible for.
Detailed traffic measurements are necessary to efficiently
engineer the network.

A powerful source of information about network is
sFlow [4] - multi-vendor sampling technology embedded

within switches and routers. It provides the ability to
continuously monitor application level traffic flows at
wire speed on all interfaces simultaneously.

The current tools for network monitoring are limited in
their support of sFlow. The need to automate the analysis
and presentation is critical for efficient operation of wide
scale network NOC like NREN NOC. This problem of
providing NOCs with data collection and presentation
tool is an area of our research focus.

In order to have a better insight into network traffic we
decided to use the application sflowtool [5] which listens
for sFlow samples, decodes them and displays as a text in
a human readable format. A Perl script is used for storing
the traffic data in the RoundRobinDatabase [6] format
common for GNU GPL licensed network management
tools.

Because of hard interpretation of the raw data obtained
using the aforementioned application we decided to create
a framework alternative to the original approach.

The first attempt at implementing this approach was
undertaken at the Polish NREN PIONIER [7] NOC for
generating Ethernet VLAN traffic reports. The system
which is available via Web interface gave the NOC the
capability to quickly aggregate, analyse and present data.
It can be easily extended to provide other information
about the type of service, ports, AS numbers available
with the use of sFlow.

In this paper we illustrate technology for a monitoring
framework for collection and presentation of sFlow data.
We also present the deployment experience gained with
using it within the Polish NREN and highlight the impact
of this application on the NOC operation. The results of
the prototype implementation will also be presented in a
form of network traffic measurements, followed by a
discussion on future work.

II. PROBLEM

The first attempt to monitor network traffic using
sFlow samples was undertaken using Perl script
sflowRRDLoad available as one of sflowutils. The aim of
this script is to monitor the usage of the interfaces.

The results were not satisfying. The sFlow sampling
rate on the PIONIER network elements is set for all
interfaces, so the number of sampled packets from a

given interface depends not only on the sampling rate, but
also on the sFlow status on other interfaces
(enabled/disabled). Each change of sFlow configuration
caused changes in the outcome of the monitoring system
making the results difficult to interpret and not reliable.
We will discuss it on an example. Let us assume that we
have eight interfaces (numbered from 1 to 8), each one
with the same volume of traffic. sFlow is enabled only on
the first interface, but the sampling rate is set per the
whole device. So we count every packet crossing the
switch but the sampled packets are taken only from
interface number one, which is sFlow-enabled. And now
let us analyse the following cases:

- traffic on interfaces 5 to 8 is tripled, so the total
volume traffic crossing the switch is doubled - we receive
twice more samples from the first interface.

- sFlow is also enabled on the second interface - the
total number of samples remains the same, but only half
of them concerns traffic on the first interface.

However, this is only part of the problem. Cases
described above do not apply to devices with sFlow
sampling set per each interface independently. In such a
case, if we used the aforementioned sflowRRDLoad Perl
script, it should be enough to multiply interface sampled
traffic volume by sampling rate to get the total volume of
traffic for this particular interface. It may also happen that
the results differ from the ones obtained using the MRTG
tool and SNMP counters. One of the possible reasons is
that there can be packet loss between the sFlow-enabled
device and the sFlow collector. The question then arises
whether we should tune the multiplying factor in order to
achieve matching results.

Another problem to overcome is data loss for VLANs
with very low network usage. Every sampled packet feeds
the appropriate period in the RRD file. For periods where
no packet has been sampled, the RRD tool does not write
data point to the database. The problem occurs during
time aggregation when none of the techniques used by the
RRD tool engine is acceptable, e.g. if we want to
aggregate periods of time with and without data points the
RRD tool can only take one of two actions: mark the
whole period as “no data available” or calculate the
average for a given volume of traffic values and extend it
to cover the whole time period.

III. MONITORING FRAMEWORK

We first define some notation we use in this section:
• T the total traffic on the interface;
• v the traffic on a particular VLAN on that

interface;
• s VLAN’s share on that interface.

Using the sFlow and Perl script has many advantages.
sFlow can deliver very detailed information about
network traffic and Perl is flexible in processing data – it
can be easily tailored to satisfy all the needs.

Originally for each sampled packet the data has been
acquired and then appropriate RRD file updated with the
value corresponding to the sampled packet size. Then the
RRD system takes care of putting the value in an
appropriate period. But, as we mentioned, the number of

sampled packets may vary regardless of the real traffic
volume.

We also observed that if traffic did not change, the
proportions between different VLANs remained at the
same level, even if we changed sampling rate or sFlow
status on other interfaces.

Because of difficulties in the interpretation of absolute
values, we decided to monitor relative values. For every
VLAN attributed to an interface we monitor its share in
the total traffic T on that interface which is Tvs /= .

With the solution proposed here to observe the VLAN
traffic, we have several stages of processing:

Step 1 – acquiring data
From every sample we take the IP address of agent,

input and output interface, VLAN number and packet
size.

Step 2 – dividing time into periods
The current timestamp is taken from the localhost and

checked if the measurement period has elapsed.
Step 3 – updating files
If the measurement period has elapsed, we update files

storing data collected so far in step 4 (ratio s). For each
file we check the last timestamp update, and if it is older
than the end of the previous period, we feed all missing
periods with value 0. Data is stored in files with the
following naming convention: <agentIP>-<interface>-
<VLANnumber>.rrd. After updates all the collected data
are flushed and a new period begins.

Step 4 – data processing
Data acquired in step 1 is collected. It is stored in two

hash tables: one for interfaces and another one for
VLANs on the interface.

In comparison to the original approach, only step 1
remains untouched. Because we calculate the share s , we
have to wait for the time period to finish (step 2) and if it
has not elapsed, store the value temporarily in the hash
table (step 4). We increment the traffic volume T and
VLAN traffic v with the size of the sampled packet. Step
3 is the clue. First of all, for every VLAN we calculate
the ratio s . It is worth remembering not to divide by zero
in case of unidirectional traffic.

Before we explain how the framework solves the
problem of filling RRD files with the 0 value, let us focus
on the RRD options. There are two important
configuration options: xff and heartbeat. Xff concerns
aggregation when data from a few short periods of time is
aggregated into one value to save the occupied filesystem
space. If we have periods of time with some values mixed
with periods when no data was available, xff is a
threshold how many periods with out data are taken into
account during aggregation. For example, xff=1/3 means
that to aggregate 6 periods into 1 it is required to have at
least 4 values; otherwise the whole period is marked as
“no data”.

And now if we do not have any sampled packets, we
will not update the RRD file. Let us take a look at what
can happen then:

Figure 1. Two cases of aggregation mixed periods with values and
period with “no data”

In the first case shown on Figure 1 one period is
marked “no data”, so that period is excluded from
calculating the average and as a result this period is
treated as it would have an average value.

In the second case there is not enough values, so these
values are lost and whole aggregated period is marked as
“no data”.

Our experience shows that we can avoid such situation
using the heartbeat option. This option tells us how long
the last update remains valid. For example, if we have 5-
minute periods, heartbeat is set for 24h we can feed RRD
twice a day and there will be no “no data” periods
because the last update value will be split to fill all the
periods between updates. So generally very long
heartbeat solves our problem. Unfortunately, the tests run
over the national network showed that it leads to
distortions and the total sum of traffic on all VLANs on
the interface varies between about 95% and 105% of total
interface traffic volume T , which can be confusing and
not reliable.

To avoid distortions and keep the sum on the 100%
level at all times before each RRD update we check the
last update timestamp and fill all lacking periods with
value 0.

If we want to get absolute values about traffic (in bps
or Bps), it is enough to multiply VLANs share s by
values taken from MRTG statistics (which use SNMP).

The solution presented above is a must in case of
devices where sFlow sampling is set per the whole
device. The main advantage remains the fact that we can
change the sampling rate and the monitoring system does
not require any changes nor reconfiguration. We also
have no dilemma which results (MRTG or sFlow based)
are closer to the real values.

To give the administrator a powerful tool to visualize
the data, we also created a website frontend. It is written
in PHP and uses the MySQL database. It consists of two
tables: one for network devices and one for interfaces.
The database is used to make a relation between rrd files
produced by the MRTG and VLAN monitoring system.

IV. IMPLEMENTATION

The framework has been successfully implemented and
is currently running in the Polish NREN PIONIER
Network Operation Center for the generation of Ethernet
VLAN traffic reports and substantially helps network
administrators to diagnose packet-switched network
traffic problems. The tool collects data from 16
BlackDiamond switches which operate the national
backbone of 10 Gb/s and run 278 VLANs. There is a
central data collector where the whole data is sent. The
sFlow collector is running on the PIII 500 system with
512 MB RAM powered by FreeBSD. The CPU usage is
about 5%, sflowtool and Perl script uses about 10MB of
RAM. There are 5424 rrd files (including 2349 updated
during the last 24 hours) occupying 350 MB disk space in
total.

Figure.2 shows the Web interface for sFlow monitoring
application.

Figure 2 Website frontend for VLAN monitoring system

V. CONCLUSIONS AND FURTHER WORK

The described framework uses the sFlow technology
which is present in today’s widely deployed packet-
switched networks and enhances tools which could be
easily used to show traffic data and detect network
problems in a user-friendly graphical way.

There are also some unresolved problems which
remain as future work. We would like to reduce space
occupied by files updated more than 1 month before.
Growing popularity of the IPv6 protocol and the fact that
it is supported by sFlow makes us consider the tool useful
also for monitoring the IPv6 traffic

If we wanted to extend monitoring with other
parameters, we would have to change the Perl script
which requires deep analysis of the script itself and some
Perl fluency. There is also a possibility of introducing
some errors every time we modify the script and to crash
the monitoring system. Works done in the area of Data
Stream Management Systems [8] showed that for the
future it is recommended to replace the Perl script by
DSMS.

It is also worth analysing the possibility of archiving
sFlow streams and to create an advanced filtering
framework to make backward statistics possible for all
possible network parameters.

ACKNOWLEDGMENT

The authors thank Tomasz Szewczyk of Poznan
Supercomputing and Networking Center for his time and
effort in implementing the framework.

REFERENCES
[1] M.Murray and K. Claffy, “Measuring the immeasurable: global

Internet measurement infrastructure”, presented at PAM2001.
[2] The Multi Router Traffic Grapher (MRTG) system official

homepage [Online]. Available:
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

[3] The official Nagios website [Online]. Available:
http://www.nagios.org/

[4] The authoritative website with information on sFlow,
specifications, latest developments and products, that support
sFlow [Online]. Available: http://www.sflow.org

[5] InMon’s scripts and utilities for analyzing sFlow data [Online].
Available: http://www.inmon.com/technology/sflowTools.php

[6] The official RRD website [Online]. Available:
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

[7] Polish Optical Internet PIONIER [Online]. Available:
http://www.pionier.gov.pl/eindex.html

[8] T.Plagemann, V.Goebel, A.Bergamini, G.Tolu, G.Urvoy-Keller,
E.Biersack, “Using Data Stream Management Systems for Traffic
Analysis – A Case Study”, presented at PAM2004 [Online].
Available: http://www.pam2004.org/papers/113.pdf

VITAE
WIKTOR PROCYK received the M.Sc. degree in computer science from
Poznan University of Technology in 2000. He works in the Management
Unit in PSNC. His interests include active and passive measurements
and IPv6.
SZYMON TROCHA received the M.Sc. degree in computer science from
Poznan University of Technology in 1998. He is Head of the
Management Unit in PSNC. He is mainly involved in the network
management applications planning and implementing.

