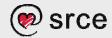
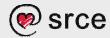

AAI for Croatian Academic and Research Community

Miroslav Milinović

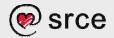
University Computing Centre – SRCE, Universty of Zagreb, Zagreb, Croatia miro@srce.hr


Workshop WS-3 CUC 2004, Zagreb, September 2004



Contents

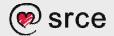
- ✓ Part 1: AA(A) problem and solutions
 - Needs & challenges
 - AA(A) problem
 - AA(A) Infrastructure
 - AAI vs. PKI
 - SSO
- ✓ Part 2: AAI@EduHr
 - Current status in Croatia
 - AAI@EduHr project & deliverables



Part 1: AA(A) problem and solutions

Needs

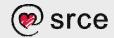
- Network & application access
 - simple
 - reliable
 - allow resource owner to:
 - define who and under what conditions can access
 - monitor users / audit activities
- Use combination of remote resources to fulfill a task:
 - computation
 - data handling
 - information retrieval
 - visualization
 - collaboration support
 - multimedia distribution
 - experimentation
 - ...


Challenges

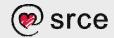
Different perspectives:

- providers (service and/or content)
- intermediaries
- users (individual and/or organisations)

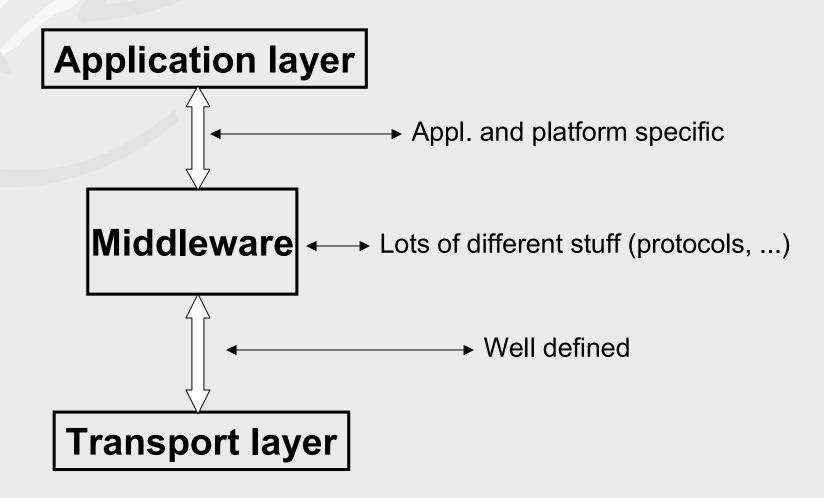
Different problems:


- technical (programming could be difficult)
- non-technical (laws & policies, organisational and social aspects)

What is Middleware?

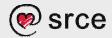

- broad definition: "glue" between the network infrastructure and user applications
- commonly used word (buzzword?) with unclear scope
- specialized networked services that are shared by applications and users
- a set of core software components that permit scaling of applications and networks
- tools that take the complexity out of application integration
- ✓ a second layer of the IT infrastructure, sitting above the network
- ✓ the intersection of the stuff that network engineers don't want to do
 with the stuff that applications developers don't want to do

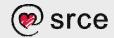
 (Ken Klingenstein)



Middleware Scope

- Core middleware
 - Identifiers
 - Directories
 - Authentication, Authorisation, Accounting (AAA)
 - Certificates and PKI
- Upper middleware (Upperware)
 - "services that applications would like to have provided for them, rather than having to perform these functions themselves"
 - computing, data repositories, resource discovery, multimedia ...


Middleware Model


Directories

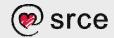
- specialised databases designed for storing and retrieving information about individuals, organisations, services, resources, ...
- designed for storing and retrieving information
 - fast reading, writing is slower
 - static view on the data
 - simple updates without transactions
- ✓ network protocol for access (X.500, LDAP, ...)
- history: used for White pages services

Directories & Middleware

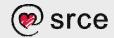
- essential for almost all middleware services
- move from White pages to Directory Enabled Networks
- currently LDAP based directories are considered as the best practice
- activities in:
 - IETF
 - TERENA
 - Internet 2 Middleware

AAA

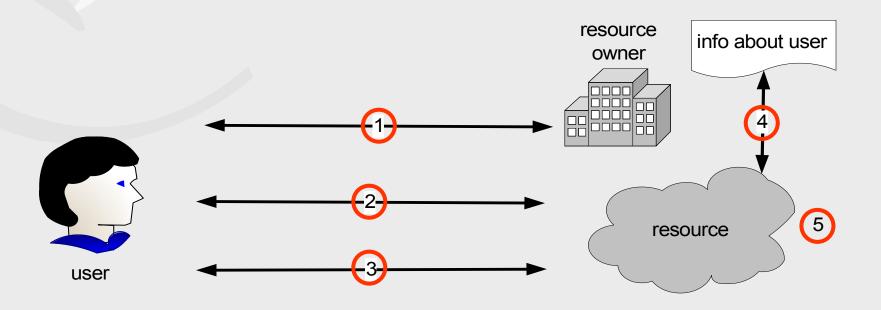
Authentication (AuthN)

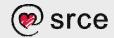

Authorisation (AuthZ)

Accounting (Auditing)

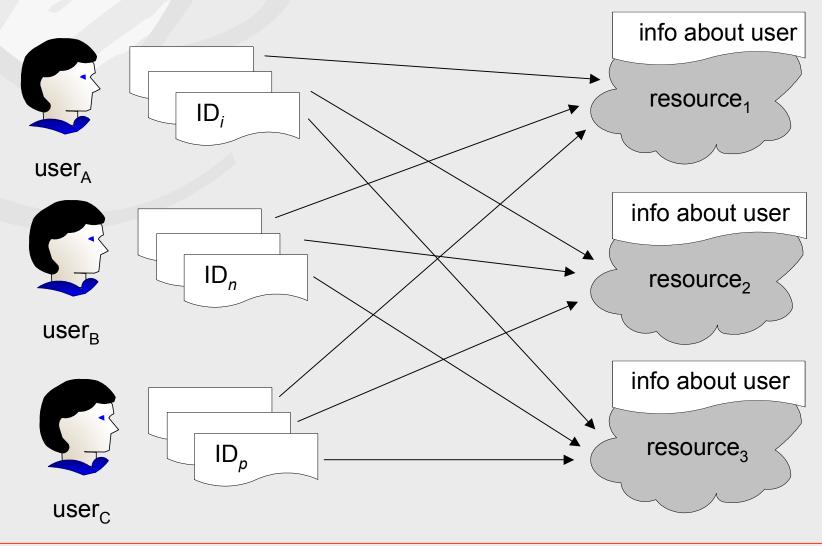

Authentication

- process of establishing whether or not a real-world subject is who or what its identifier says it is
- identity can be proven by:
 - something you know, like a password
 - something you have, like a smart cards or public-key certificates
 - something you are, as with positive photo identification, fingerprints, and biometrics
- should be secure, efficient and effective

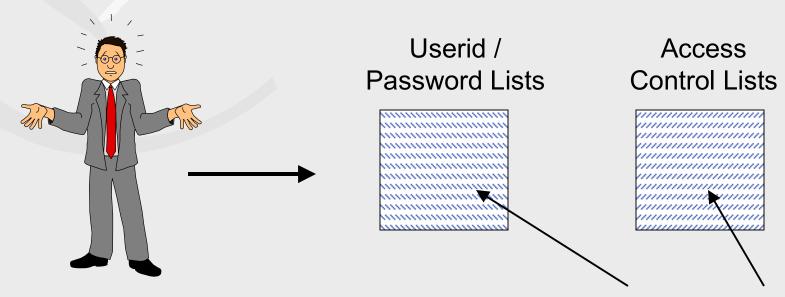



Authorisation

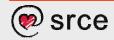
- assume the user is known (successfully authenticated)
- the user has attributes determining what he/she is allowed to do
- the resource has use conditions set by the resource owner
- authorisation process = make the access decision
- requires mapping user's attributes with resource's use conditions

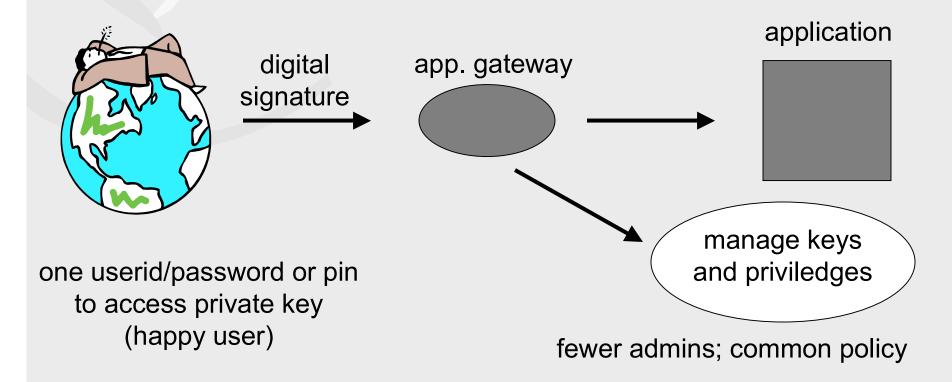


Steps in AA Process

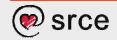


AA Problem

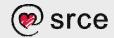

Traditional Applications


multiple userids/passwords (confused user)

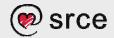
mulitiple admins; no common policy


Authentication and authorisation are internal to the application

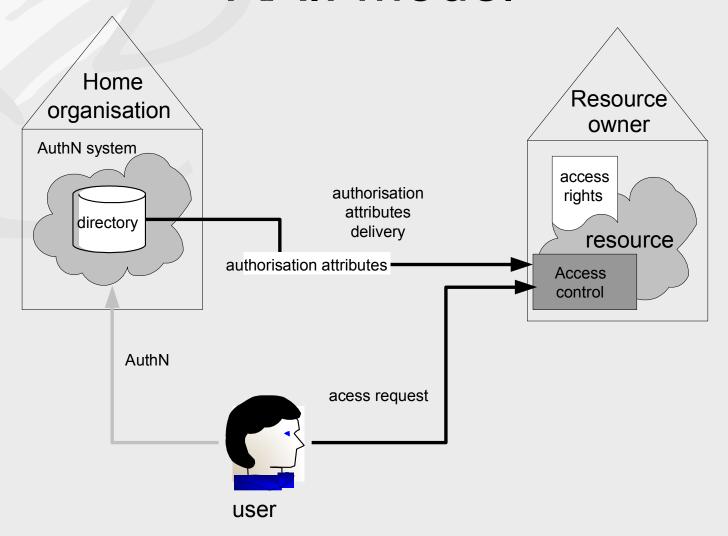
Ultimate Goal



Authentication and authorisation are external to the application


Inter-institutional AA

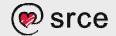
- disclosing credentials beyond your administrative domain:
 - mobility
 - virtual organisations
 - publishers, distance education, grids, ...
- increased flexibility:
 - better than IP address-based authentication
- increased security:
 - weak userid/passwd replaced by certificate



AA Infrastructure

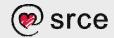
- solution for (inter-institutional) AA problem
- √ 3 key elements:
 - ✓ user, home organisation, resource owner
- √ 3 basic actions:
 - ✓ user AuthN performed by (his) home organisation
 - delivery of user's authorisation attributes from home organisation to resource (owner); set of attributes has to be configurable to meet the needs of both parties (strong privacy)
 - ✓ resource owner decides about the access (AuthZ).

AAI: Model

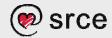


AAI: Expectations

The AAI should:


- minimise the work of the system administrators,
- be scalable to work with many users,
- be standards based
- be secure,
- should reduce to the minimum the need to install new software on end user systems.

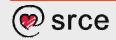
In a highly distributed and decentralised environment, it is important that the user administration is equally distributed


AAI: Challenges

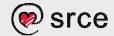
- AAI phases:
 - AuthN, AuthZ, (Control of Session, proxy frontend element)
 - description
 - · architecture review
 - elements involved
- centralised vs. distributed infrastructure

Authentication Phase

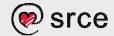
- many solutions:
 - most common: user + password
 - other: one time password, digital certificates (key cards, tokens), biometrics,...
- various protocols used (LDAP, Radius, ...)
- distributed vs. centralised solutions
- (LDAP) directories used to store the data about the users


Authorisation Phase

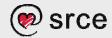
- based on rules that implement access control policies
- uses: origin address of the request, client's identity, client's attributes, time ranges, ...
- possible use of external authorisation server or authorisation engine
- in distributed AAI (sometimes) it is necessary to have an identification manager to know: "who are you", "where may I ask about you"


Control of Session

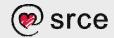
- allows to identify the client of the request
- improves performance of a AAI
- allows AAI not to repeat a heavy AuthZ process in each request
- problems
 - very dependent of applications and protocols
 - security problems
- Web browser (HTTP):
 - Cookies
 - Reference parameters
 - Coded in URLs


Access Control Proxy Element

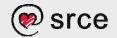
- helps to integrate the new technology with old services
- for the home organization
 - controls the access of home users to external organizations resources
 - useful for content providers
- for the resource owner
 - firewall for services
 - centralises the access control policies for all the resources of the organisation
- helps in the integration between different solutions


Centralised Solutions

- common servers or services for all the organizations involved
- advantages
 - No inter-organizations trust problem
 - No client (or home site) identification problem
- disadvantages
 - scalability
 - difficult management
 - flexibility (?)


Distributed Solutions

- elements may stay in different organizations, even in third trust parties
- advantages
 - flexibility
 - scalability
- disadvantages
 - inter-organizations trust
 - client (or home site) identification
 - common attribute schemas (for directories)


PKI Concept

- enhanced security
- public keys / certificates replace weak user/password based AA
- Public Key Infrastructure (PKI) is a combination of
 - software,
 - protocols,
 - legal agreements
 - that are necessary to effectively use certificates.
- X.509 standard for certificates is used

PKI Components

- Certificate Authority (CA), that manages and signs certificates for an institution
- Registration Authorities (RA), operating under the auspices of the CA, that validate users as having been issued certificates
- PKI management tools, including software to manage revocations, validations and renewals
- Directories to store certificates, public keys, and certificate management information
- Databases and key-management software to store escrowed and archived keys
- Applications that can make use of certificates and can seek validation of others' certificates
- Trust models that extend the realm of secure communications beyond the original CA
- Policies that identify how an institution manages certificates, including legal liabilities and limitations, standards on contents of certificates, and actual campus practices

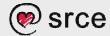
PKI Components

Infrastructure System

Registration

Certification

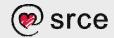
Directory


Time Stamping

End User System

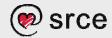
Signature Component

Verification Component

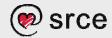

Visualisation Component

What is Single-Sign On?

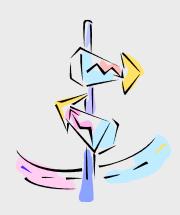
* SSO


- authenticate once, access multiple (network or application) services
- simple(r) task: separate SSO systems for network and application access
- ultimate goal: SSO across network and application domains

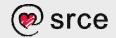
CUC 2004 - WS3

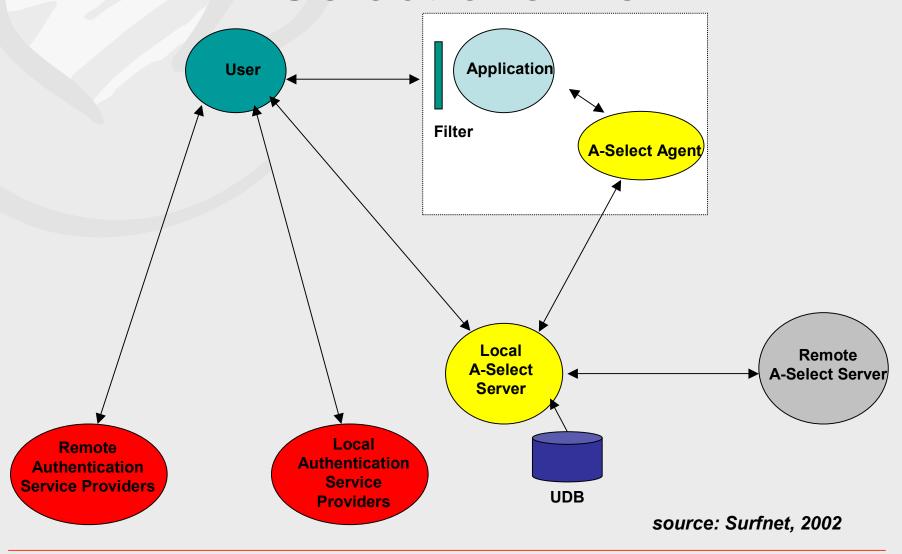

Network access & SSO

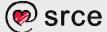
- access to the same type of network (e.g. WiFi) with a single account (horizontal roaming)
- access to different networks (e.g. WiFi and GPRS) with a single account (vertical roaming)



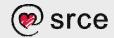
Application access & SSO

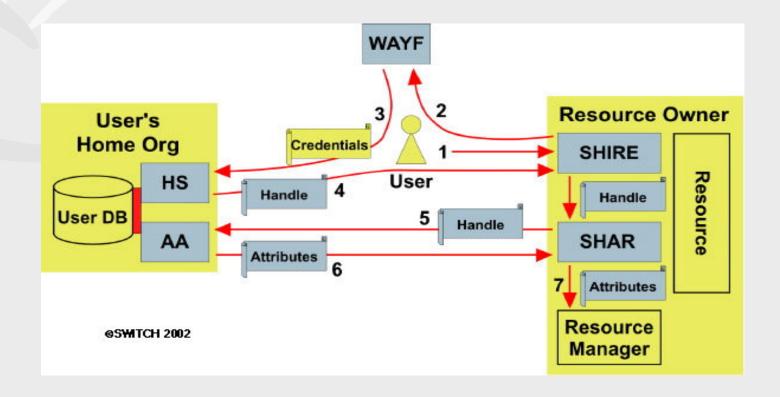

- thru a web login or webISO server
- embedded in an AAI environment:
 - authN services
 - authZ services (roles, attributes, etc.)
- simple within a single domain
- challenging part: SSO across multiple domains

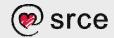

AAI in real life



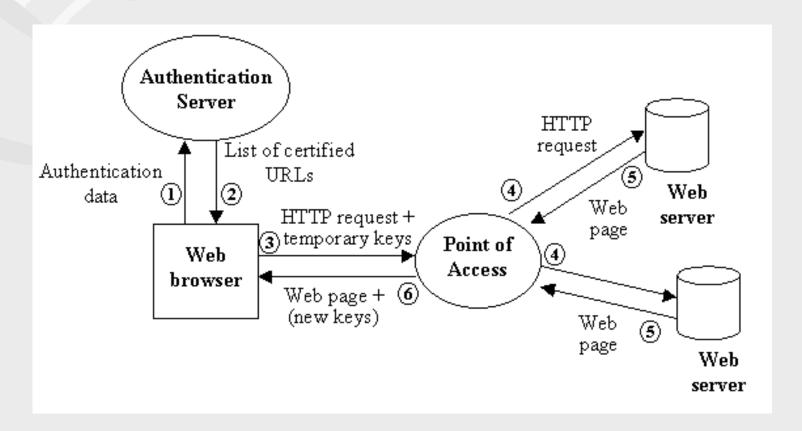
- A-select (http://a-select.surfnet.nl)
- FEIDE (http://www.feide.no/)
- FEIDHE (http://www.csc.fi/suomi/funet/middleware/english/index.phtml)
- GSI (http://www.globus.org/security/)
- PAPI (http://www.rediris.es/app/papi/index.en.html)
- Shibboleth (http://shibboleth.internet2.edu/)
- Switch AAI (http://www.switch.ch/aai/)
- Permis (http://www.permis.org/)
- Athens (http://www.athensams.net/)
- *
- TERENA (http://www.terena.nl/tech/)
- Internet 2 (http://middleware.internet2.edu/)
- *****


A-Select overview

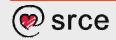



Shibboleth (Internet2)

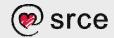
- federated administration
- delegates authentication and attribute assertion to campuses
- resource owner requests attributes from campus and makes decisions based on the response
- model allows both campus and user control over attribute release (strong emphasis on privacy)



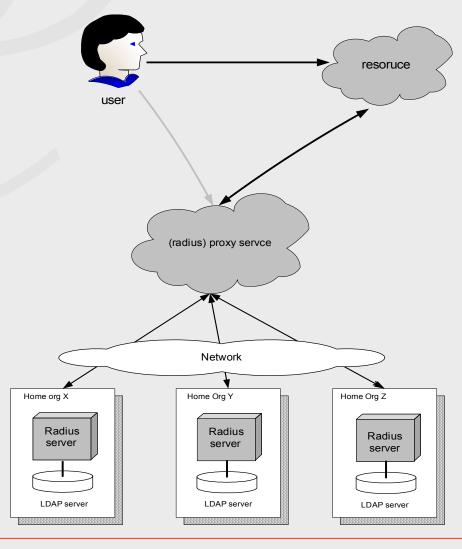
Shibboleth Architecture



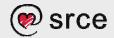
Basic PAPI Architecture

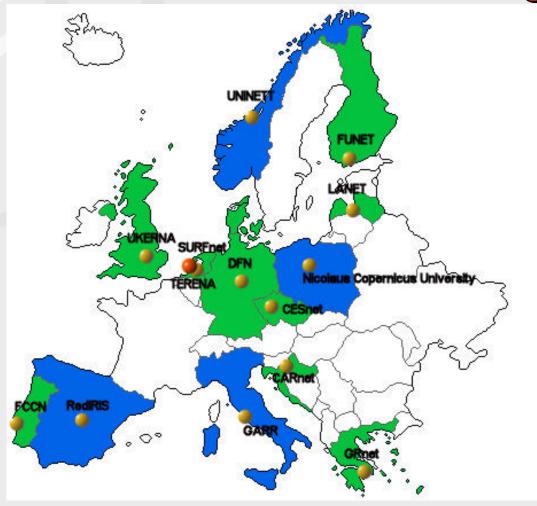


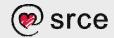
source: RedIris



AAI & Network Access


- For access control to the network there are in essence three approaches being used in the academic world:
 - based on web-based access in combination with a RADIUSinfrastructure;
 - based on VPNs;
 - based on 802.1X, the IEEE-standard for port-based authentication, in combination with a RADIUS-infrastructure.


AAI for Network Access

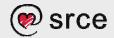

Srce & CARNet

Inter-NREN roaming

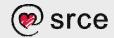
http://www.terena.nl/tech/task-forces/tf-mobility/eduroam.html

Requirements for inter-NREN roaming

Major requirements:


- scalability of the proposed solution must be maintained
- administrative overhead must be minimised
- required security must be maintained for all partners in the process

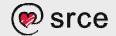
Minor requirements:


- usability must be good for all needed/used platforms.
- accountability and logging functionality must be provided to track abuse

Regulation/Legislation issues

(proposed by TERENA TF-Mobility)

Part 2: AAI@EduHr

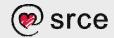


AAI in use

enable access to:

- network (dial-up, wireless, wired, cable, DSL, ...)
- networked computer resources (grid, networked disks, ...)
- basic network services (ssh/telnet, e-mail, ftp, ...)
- web resources (web-based applications)
- specific applications

 (on-line databases, e-learning, video conferencing, ...)
- ***** ...

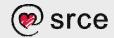

Current status

growing needs:

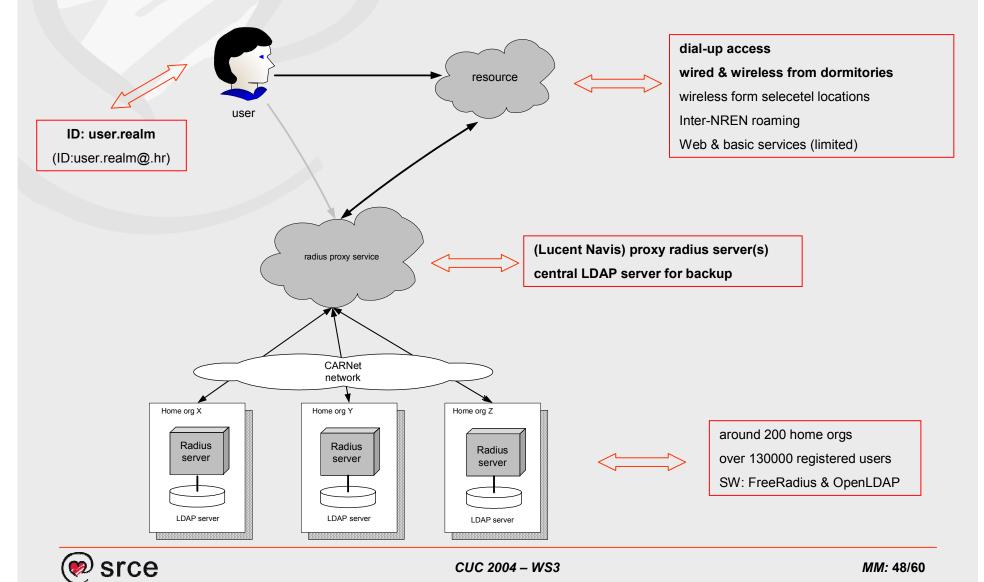
- ongoing development
- projects and services

experience:

- established system of distributed LDAP directories
- established national Radius/LDAP hierarchy
- AAI for dial-up service: CMUng system
- AAI for network access in student dormitories: StuDom project
- access to web-based applications (using LDAP and/or Radius)
- access to basic network services (unix/linux PAM)
- access to networked computer resources (SAMBA)
- bridging Open LDAP and MS Active Directory



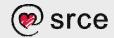
CUC 2004 - WS3


(Expected) Application of AAI

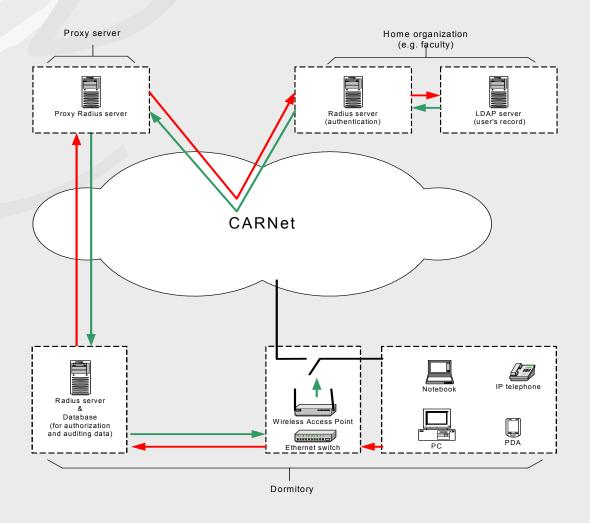
Access to:

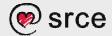
- network for end users
 (dial-up, any access based on Radius / 802.1x)
- access to basic services: telnet/ssh, ftp, samba, POP/IMAP (via modified PAM module & LDAP/Radius infrastructure)
- Web-based application
- e-learning environments (e.g. WebCT)
- VoD, streaming, video
- grids
- on-line databases
- advanced applications like student's card ("X-ica") or higher education information system (ISVU)
- LANs (classrooms, labs, Intranet, public areas, ...)
- ***** ...

Current status


Virtual identity

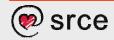
- home orgs register users and provide them with the virtual identity (username / password)
- username consist of two parts:
 - unique user identifier (e.g. unix account login)
 - unique institution identifier (e.g. home orgs domain name)
 - an example: miro.srce
- for inter-NREN roaming @.hr extension has to be used:
 - miro.srce@.hr



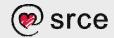

Client for network access (802.1x)

- any device with EAP supplicant (client) for AuthN
- some of available clients:
 - MS Windows 2000 i MS Windows XP secureW2 http://www.alfa-ariss.com/
 - LINUX/UNIX http://www.open1x.org/
 - Win95, Win98, Win98 SE, MAC http://www.mtghouse.com/ http://www.funk.com/

StuDom AA(A)



CUC 2004 - WS3


StuDom AA(A) system - technology

- authenticated and Authorized wired and wireless access to CARNet network using IEEE 802.1X
- Username/Password based Authentication
- User Mobility: connection from any part of the StuDom Network
- no simultaneous network access allowed: connection to only one work place at the time using same username/password
- switch uses EAPOL and EAP-TTLS for the exchange of authentication messages with a client and Radius server

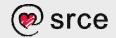
StuDom AA(A) - implementation

- each user has to be authenticated or recognised as a member of Croatian academic and research community
- each user has to be authorised for the use of the StuDOM service (network access)
- adding auditing element as a way of supervision of the StuDOM service usage

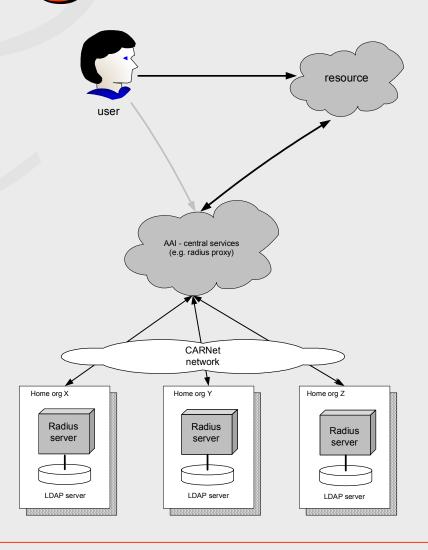
AAI@EDU.HR project

 joint project of Srce and CARNet endorsed and financed by Ministry of Science, Education and Sports

- main goal: to establish AAI for higer education community in Croatia
- 2 years:
 - Phase I (first year): define and establish basic AAI
 - Phase II (second year): introduce certificates/PKI and ensure wide use of established AAI

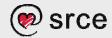

AAI@EDU.HR: Goals

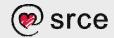
- define concepts, architecture and standards of AAI for higer education community
- define rules an policies in order to ensure the reliability, quality and consitency, of the directories used for storing data about the users
- establish basic AAI for higer education community
- ensure that the established infrastructure is used as widely as possible
- examine the possibility and introduce use of certificates / PKI instead of weak user/password AuthN


AAI@EDU.HR: Deliverables

- AAI.1: establish the "AAI Board";
- AAI.2: an overview of current status regarding the use of AA(A) systems;
- AAI.3: technical and organisational standards of AAI for higher education community;
- AAI.4: rules and policies for AAI maintainance (technical, informational, organisational);
- AAI.5: extensible CroEduPerson directory schema (with rules and policies for further development / maintenance);
- AAI.6: rules and policies for LDAP directories maintenance (technical, informational, organisational);
- * AAI.7: extensible and functional AAI based on distrubuted LDAP directories:
- AAI.8: AAI deployed (in use for selected / major resources);
- AAI.9: center for support and training;
- AAI.10: application of certificates /PKI;
- AAI.11: test and implement SSO;
- AAI.12: interconnect with other national/international AAIs

CUC 2004 - WS3

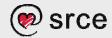

AAI@EDU.HR: Model


CroEduPerson schema

- follow European and Internet2 experience but meet local needs
- current CMU schema starting point
- based on available and widely accepted schemas:
 - person, orgPerson, inetOrgPerson, eduPerson
- make sure to:
 - meet the needs of Croatian higher education community
 - be interoperable
 - support standards like: H.350, X.509 certificates
- ver. 1.0 will be available for comments in October 2004

Contents

- Part 1: AA(A) problem and solutions
 - Needs & challenges
 - AA(A) problem
 - AA(A) Infrastructure
 - AAI vs. PKI
 - SSO
- Part 2: AAI@EduHr
 - Current status in Croatia
 - AAI@EduHr project & deliverables


Your task ...

... help us to solve the AAI puzzle!

aai@srce.hr

http://www.srce.hr/aai

