
Monitoring systems: Concepts and tools

Zdenko �kiljan Branimir Radi�

Department of Computer Systems,

University Computing Centre, Croatia

{zskiljan, bradic}@srce.hr

Abstract

Every computer system has to be systematically
supervised on account of recognition of critical
circumstances that need troubleshooting,
system/application tuning or, in the end, system
upgrade. During past years, various tools were
developed for that purpose on UNIX/Linux
platform. This presentation brings an overview
of both traditional tools for monitoring
UNIX/Linux systems as well as of complex
tools for monitoring distributed systems.

1 Opening remarks
Among traditional tools, different sets of tools
will be considered according to their specific
application area; basic system monitoring tools,
system integrity monitoring tools, system
performance monitoring tools and services
activity monitoring tools. Data visualization
through the monitoring system is crucial in
long-term diagnostics and decision-making, so
the most prominent solutions in this area will be
commented. Finally, special attention will be
paid to the concept of cluster monitoring and its
fundamental principles.
This is not a comprehensive review of tools.
Due to limited space, it merely takes into
consideration selected prominent Open Source
solutions in different fields of monitoring.

We shall consider different aspects of traditional
approach to monitoring, oriented towards a
single system, as opposed to a cluster oriented
monitoring approach.

2 Single System
Monitoring Facilities

We shall consider the following single system
monitoring facilities:

� Log files
� /proc pseudo file-system
� Basic OS commands for system

monitoring
� File integrity checkers
� IDS systems
� System performance monitors
� Service activity monitors
� Visualization tools

As the system comes into use, the very first
help to a system administrator are log files
and basic system commands, convenient to
make the system tuning and debugging
easier.

These commands are building blocks of
system activity monitors that administrators
use to keep an eye on a system.

2.1 LOG files as a source of
information

Log messages are the most valuable sources
of information for system administrators.

Most UNIX-like systems provide an API for
application programs, which sends log
messages to the system, where they can be
centrally handled at the discretion of a system
operator.

Applications and their messages vary
significantly in their importance to certain
audience. If a number of applications are

considered ''critical'' and their status is the
system administrator's responsibility, he doesn�t
want to search to find out where and how every
critical application logs its status.

That is where Syslogd comes in as a precious
information collector and distributor. Syslogd is
a daemon, which listens to various system and
application messages and distributes them
according to the user-defined settings in
syslogd.conf file, so they can be easily analyzed
with respect to their priority.

2.1.1 /proc pseudo file system

/proc pseudo file system is an interface to kernel
data structures, which is mounted as a regular
file system.

The /proc mount point provides a reasonably
complete set of local monitoring data, including
system load, memory utilization and per-process
system resource utilization, some general
information about a system and as such is a very
useful source of information about the state of a
system.

2.1.2 Basic OS Commands for
System Monitoring

There are numerous commands that help to
supervise the system activity.

Process examination: ps, top
Network examination: netstat, ping, traceroute,
ntop, tcpdump, ip.
File system examination: df, free, find, locate,
lsof, grep.
System devices examination: iostat, vmstat, sar.
General information: uname, uptime, linuxinfo

Every system administrator should have
knowledge of the way these commands are
used.

2.2 System log anomaly monitors

To be able to excerpt the most useful
information from all log files, many utilities
were developed that help with log analysis.

2.2.1 Logcheck (LogSentry)

Logcheck [1] is a general-purpose tool that is
designed to run on regular basis and check
system log files for security violations and
unusual activities.

It has a huge database of predefined patterns
and it simply sends a mail message with logs
that match these patterns. Administrators can
easily modify patterns database.

Advantages: Easy to use, powerful predefined
database of patterns.
Disadvantages: Best performance requires
good knowledge of regular expressions,
limited alerting mechanism (mail only), it is
not a real-time monitor.

2.2.2 Simple WATCHER

Simple WATCHER (Swatch [2]) is as
Logcheck a program used to parse through
multitude of log data generated by various
programs.

It is fully configurable with triggers (actions),
so that while it is continuously monitoring log
data in "real-time", it can take actions based
upon certain high-priority events
administrator decided to watch for.

Advantages: Easy to use, refined action
configuration facilities, performs real-time
checking
Disadvantages: Poor database of predefined
patterns

2.3 File integrity checking

Integrity checking tools are used for
periodical verification of selected files.
They work by first creating a database of
unique identifiers for each file or program to
be verified.

Integrity checking includes verification of
checksum numbers generated by encryption
algorithms from the file's contents, but also
can include verification of attributes, such as
permissions and file sizes.

2.3.1 Aide and Tripwire

Aide [4] and Tripwire [3] are similar Open
Source programs designed to monitor changes
in a key subset of files identified by
administrator, and report on any changes in any
of those files.

Files are scanned periodically (daily or more
frequently), that is defined through cron facility.

Any change, addition or deletion is reported by
mail, so that a proper action can be taken.

2.3.2 AIDE Repository Management
Suite (ARMS)

ARMS [5] is a centralized version of Aide,
developed by CARNet. It uses client-server
model to send aide reports to a central
repository where they can be analyzed in a
broader context and isolated from original host
in case of a break-in.

2.4 IDS systems

2.4.1 Snort

Snort [6] is an advanced system for intrusion
detection that utilizes preprocessors and
database of predefined patterns to analyze real-
time network traffic.

Advantages: Good resource of attach/intrusion
information.
Disadvantages: Too many information by
default, no inherent response mechanism,
imposes too much load on a system.

2.4.2 Snort central

Snort central [7] is a centralized version of
Snort, developed by CARNet. It uses client-
server model to send Snort logs to a central log
repository where they can be analyzed in a
broader context. It uses a web interface to
formulate queries on collected data and gives an
overall security status of whole monitored
network.

2.4.3 PortSentry

PortSentry [8] is a IDS system which actively
protect against portscans. It detects portscans
and can be configured to log them and even
block offending hosts, making completion of
a port scan difficult.

2.5 System performance
monitors

Function of a performance monitor is to
collect data from different layers of the
system � hardware, kernel, service, and
application layers � for administrators and
users who collect such data for diagnostic
purposes in order to fine-tune the
performance of different system layers.

2.5.1 SNMP

One of the most widely used approaches to
network monitoring and management is
Simple Network Management Protocol
(SNMP). SNMP has two distinct parts, a
format for describing data about computers
and a protocol for transmitting that data over
a network.

Main problem with SNMP is that it has
suffered some serious security flaws.

Advantages: Powerful, feature rich.

Disadvantages: It suffered serious security
flaws, not simple to use.

2.5.2 Orca/Orcallator/Procallator/O
rca Services

Orcallator and Orca Services [9] collect
system data and prepare it for Orca.
Procallator is a Linux version of Orcallator.

While Solaris version explores SE toolkit
kernel interface, Linux version relies on
information fetched from the /proc pseudo
file system.

Orca uses collected data to make very useful
graphs through RRDTool. With rsync or ftp
data can be collected from multiple hosts and
visualized.

Advantages: Offers very detailed system data,
convenient for long-term decision- making as
well as detection of current problems and
bottlenecks.
Disadvantages: Not Scalable, Uses RRDTool
which requires compatible systems.

2.6 Service activity monitors

2.6.1 Orca services

Orca services [9] are basically Orcallator
rewritten to be able to monitor system services
like smtp, pop3, http, dns, radius, etc. It reuses
Orcallators code to provide appropriate graphs.

2.6.2 MON monitoring daemon

Mon [10] is a general-purpose scheduler and
alert management tool used for monitoring
service availability and triggering alerts upon
failure detection. Mon was designed to be open
and extensible in the sense that it supports
arbitrary monitoring facilities and alert methods
via a common interface, all of which are easily
implemented with programs in C, Perl, shell,
etc., SNMP traps, and special mon traps.

Advantages: extensibility (monitors, alerts, user
interface), portability (Perl), simple usage.
Disadvantages: Not refined data collection on
client side.

2.6.3 BigBrother

BigBrother [11] is a monitoring tool very
similar to MON monitoring daemon with some
disadvantages � like limited subset of network
protocols supported and limited notification
methods.

2.7 Visualization Tools

2.7.1 Multi Router Traffic Grapher
(MRTG)

MRTG [12] is a powerful C/Perl based data
collector and data grapher.

It is a system designed to store and display time-
series data (i.e. network bandwidth, machine-
room temperature, server load average).

It basically does three things:
� Fetches counters from devices,
� Calculates the rate and store this for

future use,
� Draws a picture from the stored

information
Its main limitation is that only two counter
types can be monitored in each graph.

Advantages: Simple and powerful graphing
tool
Disadvantages: Limited amount of counter
types in one graph (two counters only).

2.7.2 RRDTool

RRD is the acronym for Round Robin
Database.
RRDTool [13] is a reimplementation of
MRTG graphing and logging features. It is
much faster and more flexible then MRTG.
It stores data in a very compact way that will
not expand over time (it's not scalable).
It presents useful graphs by processing data to
enforce a certain data density.
While MRTG generates the traffic graphs in a
periodic basis (normally each 5 minutes),
RRDTool generates them only when
requested (on demand).
Advantages: Powerful, feature-rich
Disadvantages: Complicated, database not
scalable, database not platform independent

2.7.3 JROBIN

JRobin [14] is a Java version of RRDTool
that offers benefits of Java portability. Using
the same logic, concepts and definitions, it
provides the very same output for the same
RRD input.

Advantages: Portable, database is platform
independent and scalable.
Disadvantages: Complicated as RRDTool.

2.7.4 Perl GD::Graph

GD::Graph is a perl5 module used for
creation of various chart types, such as bar
charts, pie charts, line charts etc.

It relies on GD library, which is an ANSI C
library for dynamic creation of images. Among
other formats, GD creates PNG, JPEG and GIF
images.

Advantages: Uses any type of database,
database can be created dynamically.
Disadvantages: Difficult to use (it requires
programming effort), limited documentation,
reduced graphing features.

3 Cluster Monitoring Tools
Traditional monitoring systems are usually
single system oriented, designed to work in a
limited environment. They typically do not
include built-in mechanisms for active response
except a primitive mechanism for sending alerts
to administrators.

Cluster concept, on the other hand, demands
employment of monitored data for efficient job
distribution and centralized access to status data
in order to make access easier to the
administrator.

As monitoring function is inherent to JMS, a
review will be made of cluster monitoring
devices comprised in:

1. JMS built-in monitoring
2. Self-sufficient Cluster Monitoring

systems

3.1.1 JMS built-in Monitoring

Based on current nodes state and in order to
achieve maximal utilization of cluster resources,
JMS distributes jobs within the cluster.

JMS consists typically of three components:
Queuing Module, Scheduling Module and
Resource Manager.

Queuing module accepts job requests and
distributes jobs into queues. It then sends
request to Scheduling module to process queued
jobs. Its function is also to maintain job
allocation and resource consumption data.

Scheduling module makes a decision on which
nodes and by which priority jobs will be

distributed. Decisions are based on the job
resource request (obtained form Queuing
Module), job management policy defined by
administrator (bigger, smaller, parallel etc.
jobs) and resources state (given from
Resource Manager Module).

Resource Manager Module collects and
maintains node status information and
performs actual job execution and
supervision. It consists of client and server
components. Server component collects
client's node information. Client component
does actual nodes data collection and passes
data to a server.

Dedicated cluster systems usually do not
employ any special job distribution based

on monitoring, but rather on a predefined

policy and minimum node status

information.

Job distribution based on monitoring (load
balancing) is typically used in case of non-
dedicated clusters.

3.1.2 Independent Cluster
Monitoring Systems

Cluster monitoring systems like Ganglia and
Supermon are fully independent of cluster
type or JMS type and consist of two major
entities: server that collects cluster state
information and a GUI-based front-end,
which provides system activity visualization.

3.1.2.1 Ganglia

Ganglia [15] is a java based, scalable
distributed monitoring system for high-
performance computing systems such as
clusters and Grids.
Ganglia includes following components:

� Gmond � local monitoring system
� Gmeta � wide-area monitoring

system.
� Ganglia web front-end

Gmond operates on cluster level and uses UDP
multicast to exchange data within a cluster.

Each cluster node listens and accepts data from
neighboring nodes providing functionality for
easy adoption of new nodes in the cluster and
data storage redundancy as every node contains
state information from other nodes.

Gmond communicates with Gmeta using XML
stream over TCP.
Gmeta processes and presents monitoring
information gathered from one or more clusters.

Gmond has four main tasks:

� Monitors changes in host state,
� Multicasts relevant changes,
� Listens to the state of all other ganglia

nodes via a multicast channel and
� Answers to the requests for an XML

description of the cluster state.

Ganglia web front-end presents all historical
data saved in Round-Robin databases by Gmeta
in HTML, allowing all cluster, hosts and host
metrics to be viewed in real-time.

Advantages: New nodes can be added easily, it
is portable, it has a fine web interface, it is
widely used and can be easily integrated with
other monitoring systems (e.g. Globus MDS,
MonALISA).

Disadvantages: Database is not scalable (as it's
using RRDTool)

3.1.2.2 Supermon

The Supermon [16] is another distributed
monitoring system, slightly different from
Ganglia.

Supermon consists of three different
components:

� A loadable kernel module providing
data (through /proc entries in form of s-
expressions)

� A single node data server (Mon) that
serves data prepared by the kernel
module,

� A data concentrator (Supermon),
which composes samples from many
nodes into a single data sample
through a TCP port.

Single node server and data concentrator
allow clients to retrieve data samples through
TCP socket.

Opposite to Ganglia, Supermon gets a single
node collected data on demand. It also must
have knowledge of all cluster nodes.

Supermon uses a modified version of the
SunRPC rstat protocol to collect data from
remote cluster nodes.

This modified protocol is based on symbolic
expressions (S-expressions) instead of XML
with advantage that they operate in a
heterogeneous environment, using plain text
and variable size expressions. Their main
disadvantage is that the used language is not a
standard language like XML.

Advantages: Fast and efficient data-collector.
Disadvantages: New nodes cannot be
included in monitoring automatically, poor
documentation.

3.1.2.3 Hawkeye

Hawkeye [17] provides a simple and
lightweight way for system administrators to
monitor and manage distributed systems.
Hawkeye is designed by Condor [18] group
and mainly used for monitoring Condor
pools.

Hawkeyes architecture comprises of four
major components:

� Hawkeye pool,
� Hawkeye manager,
� Hawkeye monitoring agent, and
� Hawkeye module.

Pool is a set of computers, in which one
computer serves as the Hawkeye Manager and
the remaining computers serve as Hawkeye
monitoring agents.
Hawkeye Manager is the head computer in the
pool that collects all monitoring information and
also handles all user queries.
Hawkeye Monitoring Agents send ClassAds
to the Manager at specified intervals.

Classified Advertisements (classads) are the
lingua franca of Condor. They are used for
describing jobs, workstations, and other
resources. They are exchanged by Condor
processes to schedule jobs. They are logged to
files for statistical and debugging purposes and
are used to enquire about current state of the
system.

Advantages: Multiplatform system, possible
custom-made sensors.
Disadvantages: Poor front-end, under
development.

3.1.2.4 Other Systems

There are many other monitoring systems
currently available and in use. We will briefly
mention some of them:

NetLogger [19] is designed and used to monitor
behavior of different elements of the
application-to-application communication path
in real-time, in order to determine location of
time-consuming bottlenecks within a complex
system.

Using NetLogger, distributed application
components are adapted to produce time-
stamped logs of �interesting� events at different
critical points of a distributed system.
Events from each component are correlated,
which allows one to characterize in detail the
performance of all aspects of the system and
network.

The NetLogger Toolkit itself consists of four
components:

� An API and library of functions to
simplify the generation of
application-level event logs,

� A set of tools for collecting and
sorting log files,

� A set of host and network monitoring
tools, and

� A tool for visualization and analysis
of the log files.

In order to instrument an application to
produce event logs, application developer
inserts calls to the NetLogger API at all
critical points in the code and links
application with NetLogger library.

NetLogger ability to correlate detailed
application instrumentation data with host
and network monitoring data has proven to be
a very useful tuning and debugging technique
for distributed application developers.

Paradyn [20] does performance monitoring
for long-running parallel and distributed
applications and adapts the performance of
these applications by instrumenting them
dynamically, at run-time, using the
monitoring information it collects.

Falcon [21] is an application specific on-line
monitoring system that provides its own set
of instrumentation libraries and controls,
which developers of applications can use to
tune its performance.

/dproc [22] � a distributed pseudo file
system, which extends /proc interface with
resource information collected from both
local and remote hosts to predictably capture
and distribute monitoring information; dproc
uses a kernel-level group communication
facility, termed KECho, which is based on
events and event channels.

4 Conclusion

There is a multitude of different monitoring
tools, which are used for different purposes.
Many of the above-mentioned monitoring

systems are inevitable on every computer
system; especially security related ones, while
others are useful in different environments,
which depend on user requirements and
limitations as well as system-specific features.

When planning cluster monitoring system, and
in order to be able to utilize cluster inherent
facilities as well as self-contained monitoring
systems to obtain maximal amount of crucial
information with minimum impact on system
performance, one should carefully think about
cluster type to be used and its specific features.

5 References
[1] Logcheck:

http://sourceforge.net/projects/logcheck/
[2] Swatch:

http://sourceforge.net/projects/swatch/
[3] Tripwire:

http://sourceforge.net/projects/tripwire/
[4] Aide: http://sourceforge.net/projects/aide
[5] ARMS:

ftp://ftp.carnet.hr/pub/debian/dists/carnet/
opt/binary-i386/

[6] Snort: http://www.snort.org/
[7] Snort Central:

ftp://ftp.carnet.hr/pub/debian/dists/carnet/
opt/binary-i386/

[8] PortSentry:
http://sourceforge.net/projects/sentrytools

[9] Orca: http://www.orcaware.com/orca/
[10] MON:

http://www.kernel.org/software/mon
[11] BigBrother: http://bb4.com/
[12] MRTG:

http://people.ee.ethz.ch/~oetiker/webtools
/mrtg/

[13] RRDTool:
http://people.ee.ethz.ch/~oetiker/webtools
/rrdtool/

[14] Jrobin: http://www.jrobin.org/
[15] Ganglia: http://ganglia.sourceforge.net/
[16] Supermon:

http://supermon.sourceforge.net/
[17] Hawkeye:

http://www.cs.wisc.edu/condor/hawkeye/
[18] Condor: http://www.cs.wisc.edu/condor/

[19] NetLogger: http://www-
didc.lbl.gov/NetLogger/

[20] Paradyn:
http://www.cs.wisc.edu/~paradyn/parad
yn.home.html

[21] Falcon:
http://www.cc.gatech.edu/systems/proj
ects/FALCON/

[22] Dproc:
http://www.cc.gatech.edu/~sandip/rese
arch.html

