
Job Management Systems Analysis

Emir Imamagi� Branimir Radi� Dobriša Dobreni�

Department of Computer Systems,

University Computing Centre, Croatia

{eimamagi, bradic, dobrisa}@srce.hr

Abstract

Job Management System (JMS) is a

system responsible for management of

user’s jobs on computer cluster. In this

paper, we describe common JMS

architecture and functionalities that JMS

has to implement. Furthermore, we

describe in details features and our own

experiences with following systems:

Condor, Torque and SGE.

1. Introduction

The main goal of computer cluster is to

create an illusion of large multiprocessor

system. On such environment, users can

execute parallel jobs or serial jobs that

consist of large number of independent

tasks. In either case, management of users’

jobs is necessary. Thus, cluster provides

the system that distributes tasks over

cluster nodes and enables creation of

cluster usage policies. This system is

called Job Management System.

Job Management System (JMS) is a

cluster component responsible for users’

jobs control, their dispatching and

scheduling. Main goals of JMS are to

create interface for users’ job requests, to

achieve efficient resource utilization and to

allow cluster owners to define cluster

usage policies. Furthermore, JMS should

gather usage statistics information, which

may be later used to charge users for

consumed time or analyze cluster

utilization. JMS is also known as Resource

Management System, Workload Manager,

Batching System, Local and Distributed

Resource Manager.

In this paper, we emphasize

functionalities of JMS that are important

for Grid systems. There is a difference

between using cluster as a part of Grid and

as individual system. When using cluster

as a part of Grid, some functionalities are

necessary. From the Grid perspective,

some of the most important functionalities

are advance reservation, standard API (e.g.

DRMAA) and integration with existing

Grid middleware (e.g. Globus Toolkit or

UNICORE).

The remaining of the paper is

organized as follows. In following section,

we describe common architecture of JMS.

In third section, we described set of

functionalities that JMS has to implement

and that we used as evaluation criteria.

Fourth section contains evaluation results

of three systems: Torque & Maui, SGE and

Condor. In fifth section, we state our

conclusions.

2. Job Management System
Architecture

JMS usually consists of three

components (Figure 1):

• Queue Manager

• Scheduler

• Resource Manager.

Queue Manager is responsible for

queue management and interaction with

users. Users submit, monitor and control

their jobs through Queue Manager.

Furthermore, Queue Manager records

resource consumption and jobs’ execution

history.

Figure 1 Job Management System Architecture

Scheduler selects and assigns nodes to

jobs. Nodes selection is based on users’

resource requests, nodes status and

scheduling and usage policies.

Administrator defines usage policies. For

example, administrator can reserve nodes

for group of users or limit resource (e.g.

memory, CPU, disk space) consumption.

Resource Manager is responsible for

resource monitoring and job execution.

Resource Manager consists of server and

client component. Client component is

placed on every cluster node and it is

responsible for execution of jobs and

monitoring of jobs and nodes. Server

component collects monitoring

information from client components and

dispatches users’ jobs to client

components. Furthermore, server provides

Queue Manager with jobs’ status

information and Scheduler with nodes’

status information.

3. Evaluation Criteria

In order to evaluate existing job

management systems, we have defined set

of criteria. Criteria are based on these

similar studies: [1], [2], [3], [4], [5], [6]

and [7]. Criteria are divided in 6 groups:

general features, job support, queuing,

scheduling, resource management and

security. Within every group, we will

emphasize features that are important for

Grid. List of all criteria is presented in

table 1. Functionalities that are important

for Grid are written with bold letters.

Table 1 Job Management System evaluation criteria

Criteria group Criteria

Platforms supported

User interface

• API (e.g. DRMAA)

• GUI

• CLI

• Web Portal

Open source vs. commercial

Cluster distribution

Installation method (install script, package)

Support

General

Documentation

Multiple job types:

• batch

• parallel

• interactive

• workflow

• array of jobs

Job description

Job support

Parallel library integration (PVM, MPI)

Multiple queues

Job control

Prologue & epilogue scripts
Queue Management

Job history & statistics

Standard scheduling algorithms

User defined algorithm

External Scheduler module

Advance reservation

Job Preemption

Fair share

Scheduling

Backfilling

Node configuration

Process migration

Checkpointing

Dynamic load balancing

Fault tolerance

CPU harvesting

Resource

Management

File stage in/out

Security Authentication

Authorization:

• job types

• resources

• queues

Accounting

Secure communication

3.1. General features

First set of criteria are general

characteristics of JMS software. Most

important characteristic is supported

platforms. It is important that JMS can be

deployed on as many platforms as

possible. At least, support for various

UNIX flavor OSs and commodity

architectures (e.g. x86, AMD) is needed.

Furthermore, JMS has to support clusters

with heterogeneous nodes.

JMS should provide at least one of

following user interfaces: graphical user

interface (GUI), command line interface

(CLI), web portal or application

programming interface (API). From aspect

of Grid systems, it is necessary that JMS

provide some form of API. Preferred API

is DRMAA (Distributed Resource

Management Application API). DRMAA

is API for submitting and controlling jobs

developed by a working group in the

Global Grid Forum (GGF).

JMS should provide some sort of

installation method (such as installation

script or program) and detailed

administration and user’s manual.

Furthermore, at least, basic user support

(such as mailing lists) is needed.

Finally, we will prefer open-source to

commercial solutions. One of advantages

of open-source system that we find

important is possibility of making various

changes to JMS services.

3.2. Job Support

JMS should support at least standard

types of user’s jobs: serial, interactive and

parallel jobs. Support for more complex

jobs is advantage. The most widely used

complex job types are array of jobs or

workflow.

JMS has to provide job description

language for users to describe resources

needed for their jobs (e.g. memory,

cputime). Detailed jobs’ descriptions are

essential for efficient job scheduling.

To enable execution of parallel jobs, it

has t be possible to integrate at least two

widely used parallel execution libraries:

MPI (Message Passing Interface) and

PVM (Parallel Virtual Machine). Some

JMSs provide interface for enabling

integration of custom parallel execution

library.

3.3. Queue Management

This set of criteria is related with

Queue Manager. The key Queue Manager

functionality is interaction with user. Thus,

Queue Manager has to provide

mechanisms for user to submit jobs,

monitor job’s execution and control jobs

(e.g. hold or stop job’s execution).

JMS should enable creation of multiple

queues, where every queue is intended for

specific type of jobs or user groups.

Queue Manager has to provide a

mechanism for storing job’s execution

history and cluster usage statistics.

Last functionality from this group is the

ability to define prologue and epilogue

scripts. Prologue script is set of commands

that are executed before every job is

executed. Epilogue is script executed after

the job. Administrators use these scripts to

perform set of actions specific for their

cluster (e.g. removing temporary files).

3.4. Scheduling

Scheduler component of JMS has to

provide following functionalities: standard

set of scheduling algorithms, usage of user

defined scheduling algorithm, usage of

external Scheduler module, job preemption

and advance reservation.

Examples of standard scheduling

algorithms are: First In First Out (FIFO),

algorithms that favor jobs based on

resource request (e.g. large jobs first,

parallel jobs first), fair-share, backfilling.

Fair-share is scheduling algorithm that

tracks users' resource consumption history

and limits the consumption in order to

ensure fair cluster usage among users.

Backfilling is scheduling algorithm that

distributes short jobs on resources that are

reserved for usage in future. Backfilling is

very important for Schedulers that enable

advanced reservation.

From the Grid perspective, the most

important functionalities are advanced

reservation and job preemption. Scheduler

has to provide mechanism for making

reservations of one or set of resources over

extended period of time. By using

advanced reservation, Grid system can

reserve resources for Grid jobs on one or

more clusters. Job preemption is process of

suspending one job in favor of other.

3.5. Resource Management

Resource management is related to

management of cluster resources and

active jobs. JMS should enable the

administrator to define policies for node

usage. By using such policies,

administrator should be able to define in

which cases, which resources of node can

be used. For example, administrator can

allow JMS to exploit only limited amount

of resource (e.g. memory or cputime) or in

case when nodes are not dedicated

administrator can define that node should

not be used when keyboard is used.

Node usage configuration is necessary

for enabling CPU harvesting. CPU

harvesting is process of exploiting

non-dedicated computers (e.g. desktop

computers) when they are not used.

Related to active jobs, Resource

Manager has to enable checkpointing,

process migration, fault tolerance and

dynamic load balancing.

Checkpointing is procedure of storing

the state of active process on hard drive.

Stored state of process is used to restart the

process from that point.

Process migration is movement of jobs

or processes from one node to another.

Jobs are then restarted from the last

available checkpoint or from the

beginning.

Dynamic load balancing is process of

balancing the load on nodes. Process

migration is necessary for dynamic load

balancing.

Resource Manager has to make

possible job recovery in case of node

failure. Fault recovery is usually done by

process migration. In that case,

checkpointed state of process has to be

stored on special nodes.

The last functionality from this group is

file stage in/out. File stage in/out is process

of copying defined set of files on the node

before the job is executed and copying set

of files after the job is executed. This

capability is important for JMS that is used

to control cluster without shared file

system.

3.6. Security

Security requirements are

authentication, authorization, accounting,

and protection of communication between

JMS services. JMS should provide its own

authentication mechanisms and support

existing solutions (e.g. Kerberos, GSI).

Authorization should be performed for

queues, resources and job types. Secure

communication between JMS services is

necessary in case when the nodes are

placed in public network.

4. Job Management Systems
Overview

We used criteria described above to

evaluate numerous existing JMS solutions.

Evaluated systems are Condor, CSS, LSF,

Loadleveler, OpenPBS, Torque, PBSPro

and SGE. Based on preliminary research

we decided to implement and practically

test following three: Condor, Torque with

Maui and SGE.

In following part of this section, we

describe features of JMS’s that we have

installed and our own experiences with

those systems. All JMSs provide most of

the features so we will outline only those

that are not provided or those that are

significantly good.

4.1. Torque & Maui

Torque [11] is based on OpenPBS [14]

with improved scalability and node fault

tolerance. Torque was installed together

with Maui scheduling system.

Torque is open source JMS with

support for wide set of systems (except

Windows OS). Clusters with

heterogeneous nodes are supported. It

provides well manuals and mailing list.

Torque does not provide install scripts but

it is available as part of OSCAR and Rocks

cluster distributions. User interfaces are

CLI, GUI and C API. It is possible to find

contributed API’s for other programming

languages (e.g. Python, Perl). GUI allows

only job control functionalities and not

administrator functions. We find that the

GUI is not very functional, especially

compared to SGE’s GUI.

Torque supports batch, parallel and

interactive jobs. It does not support

submission array of jobs or workflow,

although is possible to make basic

synchronization between jobs. For

example, it is possible to define that job

has to wait one or set of existing jobs to

finish before it starts with execution. Our

experience shows that interactive jobs do

not work smoothly. Instead of getting

output and input of job, user gets direct

access to node via rsh or ssh and then has

to execute the application.

Good feature of Torque is that it can

use external scheduling module. We used

Torque with Maui scheduler. Maui

scheduler provides advanced reservation,

complex scheduling policies, fair share

scheduling and various tools for managing

and diagnosing cluster resources.

Main disadvantage of Torque are

Resource Management features. Torque

does not provide CPU harvesting,

advanced node configuration (e.g.

definition of custom sensors), dynamic

load balancing and process migration. File

stage in/out is checkpointing with external

libraries is supported.

Torque provides authentication and

authorization mechanisms. Integration with

other security systems is not provided.

Maui provides accounting mechanism.

4.2. SGE

SGE [10] is a product of Sun

Microsystems Company. SGE is open

source JMS that supports same set of

platforms as Torque.

User interfaces and manuals are much

better then Torque’s or Condor’s.

Especially well developed is GUI that

enables complete management of cluster.

In addition, SGE provides scripts for

automatic installation and it is available as

part of Rocks cluster distribution.

SGE supports standard job types and

array of jobs. Workflows are not

supported. It provides modules for

integration with MPI and PVM parallel

libraries, but our experience shows that

those do not work smoothly. Module for

integration with MPI was unable to clean

all processes in case of failure.

Queue Management and scheduling

capabilities are one of SGE’s weaknesses.

Creation of multiple queues is not

explicitly possible. Job statistics feature is

SGE does not provide. SGE does not

support external Scheduler module

(although support for Maui is being

implemented). Scheduler component

provides set of standard scheduling

algorithms (FIFO, fair-share) but custom

algorithms, advance reservation,

backfilling and job preemption are not

supported.

Resource management functionalities

are one of the SGE’s advantages. SGE

provides support for job migration, load

balancing and fault tolerance. Furthermore,

SGE enables advance node configuration

and definition of custom sensors. By using

custom sensors (e.g. sensors for keyboard

usage) SGE can be used for CPU

harvesting. Resource Manager only lacks

support for file stage in/out.

SGE provide mechanisms for

authentication and authorization.

Accounting is implemented as commercial

module that has to be purchased

independently. SGE does not enable

integration with other accounting

mechanisms.

We analyzed here SGE version 5.3. It

is important to emphasize that next version

(6) will add most of the functionalities that

are missing. Some of the most important

added features are: job preemption,

advance reservations, creation of multiple

queues, file stage in/out and DRMAA

interface.

4.3. Condor

Condor [8] is an open source project of

University of Wisconsin. Condor is

profoundly different from two other JMS's.

Condor is designed specifically for High

Throughput Computing and CPU

harvesting.

Condor provides installation scripts,

and CLI and API interface. For monitoring

of nodes and jobs, Hawkeye can be used.

Hawkeye provides web portal interface.

Next versions of Condor will provide

DRMAA interface.

Condor is used mainly for serial jobs

but it provides limited support for parallel

PVM and MPI jobs. Language ClassAds is

provided for complex description of jobs.

Same language is used for description of

nodes. Condor also supports array of jobs

and complex workflows. There is a special

system – Condor DAG for workflow jobs.

All queue management functionalities

are provided except multiple queues. For

detailed jobs’ statistics is necessary to

install additional software – Condor View.

Condor uses matchmaking mechanism

for job scheduling. Nodes contact central

server and ask for jobs. Matchmaking

service compares job requests with nodes’

requests and assigns jobs to nodes. Explicit

definition of custom scheduling algorithm

is not possible. However, it is possible to

configure nodes to favor specific type of

jobs. Furthermore, usage of external

Scheduler module and backfilling and fair

share algorithms are not enabled. Job

preemption and advanced scheduling

functionalities are provided.

Resource Manager enables advanced

node configuration, checkpointing, process

migration, fault tolerance and file stage

in/out. Checkpointing is possible for serial

jobs only and application needs to be

re-linked with Condor libraries. Condor

allows creation of special server for storing

checkpoints. In case of node failure

checkpoint is fetched from checkpoint

server and job continues execution on

available node. Additionally, Condor

enables sending jobs from one Condor

cluster to another.

Condor provides authentication and

authorization mechanisms. It is possible to

integrate Condor with Kerberos and GSI

security systems. Condor also enables

secure communication between services.

5. Conclusion

In this paper, we outline main

functionalities that Job Management

System has to provide. We divided

functionalities in 6 groups and used them

to evaluate three widely used JMSs:

Torque with Maui, SGE and Condor. The

main motivation of this review is to find

JMS that is most appropriate for use in

Grid systems. Therefore, we emphasize the

JMS’s functionalities that are important to

Grid systems.

Analysis shows that all three systems

satisfy most of the criteria. However, every

system has some advantages and

disadvantages. Condor is ideal for serial

jobs, especially because of checkpointing,

process migration and fault tolerance.

Torque with Maui works well with parallel

jobs and enables advanced scheduling

options. Current SGE version has strong

support for node configuration and well

GUI but weak integration with parallel

libraries and lack of multiple queues are

disadvantage.

In conclusion, we find that Torque with

Maui is currently the best for Grid

integration. Main basis for this conclusion

is advance reservation capability and

integration with most existing Grid

systems (e.g. Globus Toolkit, UNICORE).

We also recommend SGE version 6,

especially because of DRMAA support

and advance reservation capability. Condor

is recommended in case when Grid is used

for HTC applications (e.g. parameter

sweep) or workflows. Furthermore,

Condor enables mechanisms for Grid

scheduling: Condor/G and glide-in.

6. References

[1] J. A. Kaplan, M. L. Nelson: «A

Comparision of Queueing,

Cluster and Distributed

Computing Systems», June 1994.

[2] M. Baker, G. Fox, H.W. Yau:

«Cluster Computing Review»,

NPAC Technical Report SCCS-

748, Northeast Parallel

Architectures Center, Syracuse

University, November 1995.

[3] J. P. Jones: «NAS Requirements

Checklist for Job

Queuing/Scheduling Software»,

NAS Technical Report NAS-96-

003, April 1996.

[4] C. Byun, C. Duncan, S. Burks: «A

Comparision of Job Management

Systems in Supporting HPC

ClusterTools», Proc. SUPerG,

Vancouver, Fall 2000.

[5] O. Hassaine: «Issues in Selecting a

Job Management Systems

(JMS)», Proc SUPerG, Tokyo,

April 2001.

[6] T. El-Ghazawi, K. Gaj, N.

Alexandridis, F. Vroman, N.

Nguyen, J. R. Radzikowski, P.

Samipagdi, S. A. Suboh: «A

Performance Study of Job

Managements Systems»

[7] T. El-Ghazawi, K. Gaj, N.

Alexandridis, B. Schott, A. V.

Staicu, J. R. Radzikowski, N.

Nguyen, S. A. Suboh:

«Conceptual Comparative Study

of Job Management Systems»,

Technical Report, February 2001

[8] Condor,

http://www.cs.wisc.edu/condor/

[9] LSF, http://www.platform.com

[10] SGE,

http://gridengine.sunsource.net/

[11] Torque,

http://supercluster.org/torque

[12] IBM Loadleveler,

http://publib.boulder.ibm.com/clre

sctr/

[13] PBSPro, http://www.pbspro.com/

[14] OpenPBS,

http://www.openpbs.org

