
Benchmarking the performance of JMS on computer
clusters

Branimir Radi� Emir Imamagi�

Department of Computer Systems,

University Computing Centre, Croatia

{bradic, eimamagi}@srce.hr

ABSTRACT

Job management systems (JMS) are

systems in charge of distributing jobs on a

cluster of computers. There is no generally

accepted way or algorithm for measuring

the performance of JMS. The most relevant

characteristics of JMS on computer

clusters are throughput and turn-around

time. Throughput is the number of jobs that

are completed on a system in a specified

time. Turn-around time is the time needed

for a job that is submitted to a system to be

completed and the results of the

completing job to be accessible. This paper

describes our attempt to benchmark

throughput of three frequently used JMS:

Sun Grid Engine (SGE), Torque and

Condor.

Introduction

When measuring the complete

performance of computer clusters many

aspects can be observed: speed of the

interconnecting network, speed of the

cluster itself measured in FLOPS/sec,

speed of clusters data storage and other. In

this paper we discus measuring of the

performance of a specific component of a

cluster - job management system.

Concrete results obtained by

measuring the performance of three

different JMS are presented.

JMS is part of a cluster that

distributes jobs for execution on different

nodes of a computer cluster. Role of a JMS

is to optimize the use of clusters resources,

enable creation of access and usage policy

to different resources, hide complexity of a

cluster from cluster users and provide a

unique interface for accessing clusters.

Performance of different JMS can be

measured in throughput as a number of

processed jobs on a single cluster in a unit

of time, or turn around time – the elapsed

time for different JMS on the same cluster

for the same job.

There is no existing generally

accepted way or algorithm for measuring

the performance of a JMS on computer

clusters. Our intention is to test the

behavior of a cluster managed with

different JMS when imposed the same

workload consisting of a various

benchmarks (which also measure other

aspects of cluster performance).

Overview of JMS tested and
testing tools used

During our work three different JMS

where tested: Sun Grid Engine (SGE),

Torque and Condor.

Condor [3] is a JMS intended

primarily for the High Throughput

Computing (HTC). Condors main

advantages are: CPU harvesting, special

ClassAds language for describing jobs and

nodes and checkpointing and process

migration.

 Condor’s orientation to HTC has

certain drawbacks:

• Although Condor can be used for

execution of parallel jobs, it is not

his standard mode of operation

and therefore enabling system for

execution of parallel jobs takes

serious adjustment.

• Checkpointing is possible only

for programs that were linked to

Condor libraries during

compilation time.

• Checkpointing Capability applies

only to serial jobs.

Sun Grid Engine (SGE) [1] has a

well developed concept of calendars where

the time when a certain resource will be

unavailable can be defined and the job

execution will be adjusted accordingly.

SGE also enables CPU harvesting. Main

drawback of the SGE is the lack of a

simple way to define global queues for

jobs and the lack of possibility to define a

preemptive schedule for execution of jobs.

Tera-scale Open-source Resource

and QUEue manager (Torque) [2] has an

efficient interface for communication with

parallel libraries, advanced scheduling and

capability of using desired module as a job

distributor. As a drawback there is no

capability of defining complex properties

of nodes.

NAS Parallel Benchmarks (NPB)
[4] is a suite of benchmarks for cluster

benchmarking [5]. NPB is comprised of

eight different tests written in FORTRAN

and C. NPB’s main advantage is that for

each test there are five different sizes,

enabling NPB to be used to test desired

aspect of a cluster by choosing an

appropriate test, and enabling the choice of

complexity by choosing between those five

different sizes.

Testing

As there is no universally accepted

benchmark or an algorithm for testing the

performance of JMS, we had an

opportunity to define the one that suited

our needs. Main goal was to test

throughput of clusters running different

JMS. Throughput of a cluster can be

measured by counting how many jobs can

be executed in a certain time using

different JMS or by measuring the time

necessary for clusters using different JMS

to execute same workloads. We decided to

use the latter approach.

Test clusters were made of two-

processor computers used as computing

nodes for the cluster and one two-

processor computer used as the front-end.

Computers used where two HP Blade

processor machines on 2.8 GHz with 2 GB

of RAM. Condor cluster had three nodes

and a front end computer, while Torque

and SGE clusters had four nodes and a

front end computer.

For the testing of JMS we decided to

use different sets of NAS Parallel

Benchmarks (NPB). NPB was identified as

the most appropriate of the Cluster

benchmark suites [5] for testing the

performance of JMS. There are 8 forms of

tests that NPB benchmark uses to

determinate performance of a cluster

system. Tests vary in complexity and in

parts of the cluster that are being tested by

them (bandwidth, CPU performance etc.).

Some tests put an emphasis on how cluster

executes parallel jobs while other on how

cluster executes serial jobs etc.

On each cluster controlled by a

different JMS a number of tests was

submitted. Tests varied in number of

simple tests that they were comprised of

and some tests used hyper threading while

others did not. All tests were compiled

with same libraries

(even same versions of libraries) so that all

the tests run on testing clusters were

identical.

Complete description of each test can

be seen in Table 1. All tests were repeated

several times and the final results are an

average of those measurements. Shorter

tests were repeated more times and longer

tests were repeated only a few times. All

tests repeated only once would in total last

approximately 44 hours of sole execution.

This is the reason why longest tests could

be repeated only several times.

JMS must be tested with same tests

compiled using same compiler programs

and linked with same libraries. This has

been achieved without difficulties and all

forms of NPB tests were successfully

compiled with same parallel libraries on all

three clusters (all the test which were

used). For each form of tests and for each

test a separate executable file had to be

created so that compilation times can’t

influence the final results. Libraries that

were used for those tests are explained in

the Table 1.

Table 1 Description of tests

Name of the test Description of the test

Hyper_short Set of 28 NPB serial tests. Hyper threading is switched on.

no_hyper_short Set of 28 NPB serial tests. Hyper threading is switched off

Hyper_long Set of 28 NPB serial tests repeated 12 times. Hyper threading is

switched on.

no_hyper_long Set of 28 NPB serial tests repeated 12 times. Hyper threading is

switched off.

long_test Set of 28 NPB serial tests repeated 144 times. Hyper threading is

switched on.

mpich_hyper Set of 70 NPB parallel tests which use 2, 4 or 8 processors. Hyper

threading is switched on.

mpich_no_hyper Set of 70 NPB parallel tests which use 2, 4 or 8 processors. Hyper

threading is switched off.

mpich-mpd / lam

hyper

Set of 70 NPB parallel tests which use 2, 4 or 8 processors. On

rocks-SGE cluster MPICH-MPD was and on OSCAR-PBS

LAM/MPI was run. Hyper threading is switched on.

mpich mpd/lam

no_hyper

Set of 70 NPB parallel tests which use 2, 4 or 8 processors. On

rocks-SGE cluster MPICH-MPD was and on OSCAR-PBS

LAM/MPI was run. Hyper threading is switched off.

mixed Set of 28 NPB serial tests and 70 NPB parallel tests which use 2, 4

or 8 processors. Serial test were run 32 times and parallel were run 8

times.

Results

In this part, results of the tests of

different JMS are given and interpreted.

Although NPB automatically generates

files in which performance measurement

results of different parts of cluster is

written these results will not be discussed.

The results contained in the report files that

NPB generates do not describe the

characteristics of JMS.

In Table 2 results generated by our

tests are presented. Numbers written in the

table show the average time in seconds that

a given set of NPB jobs take to be

completed on the cluster running a certain

JMS.

Table 2 Results of measurements

Test Number of

jobs

SGE Torque Condor

Hyper_short 28

896

1029

1080

no_hyper_short 28

1010

909

1020

Hyper_long 336

3777

3612

3780

no_hyper_long 336

5053

5001

6660

Long_test 4032

39471

38594

-

mpich_hyper 70

1279

1006

-

mpich_no_hyper 70

2776

1802

-

mpich-mpd /

lam hyper

70

934

933

-

mpich mpd/lam

no_hyper

70

1830

1651

-

mixed

1456

16223

17148

-

Results of tests indicate that all three

JMS Condor, SGE, and Torque work

successfully under high load. Condor

system was tested with a limited number of

tests because it was not possible to run

parallel jobs on it. When observing the

results of the tests, the fact that Condor

cluster had one less node then the other

cluster must be taken into consideration.

With that in mind, seeing that execution of

tests with Condor JMS lasted only a bit

longer then the same tests with other JMS

means that Condor showed indisputably

best throughput when working with serial

jobs.

Jobs which were executed with hyper

threading were completed significantly

faster than the same jobs executed without

hyper threading. Throughput with hyper

threading is much higher for serial jobs

because JMS start several jobs

simultaneously and so the overhead created

by JMS is considerably reduced. This

combined with the fact that NPB jobs

require only a small amount of resources

(memory, disk space) explains why hyper

threading increases throughput. Separately

behavior of all three systems was tested

with jobs which require high quantities of

resources. In that test hyper threading

reduced the throughput.

SGE and Torque have similar results

with Torque showing a bit better

performance when working with a

homogeneous set of jobs and SGE works a

bit better than Torque when processing a

combination of serial and parallel jobs.

Conclusions

 Testing influence of JMS on

throughput didn’t result in discovering the

best JMS but rather proved that every JMS

performs best when faced with problems it

was designed to solve. Condor performs

better in distributing serial jobs to the

cluster, while SGE and Torque handle

parallel jobs more effectively. SGE is more

successful in distributing heterogeneous

sets of jobs, while Torque works better

with homogeneous sets.

 It is hard to switch between

different JMS every time a different type

of job is submitted for execution on a

cluster. However, knowledge obtained in

this paper can and should be used to

optimize performance of computer grids

comprised of several clusters, and should

help with the choice of JMS needed for a

certain type of jobs. Grid scheduling

system could make sure that serial jobs be

submitted to a Condor controlled cluster,

and parallel jobs to SGE and Torque.

Scheduling system should also make sure

that the jobs that require little resources be

executed on a cluster that uses hyper

threading.

 Some work should also be done on

integrating capabilities which already exist

in certain JMS in order to improve general

performance of clusters and enable clusters

to be used in a simple and intuitive way.

References

[1] Grid engine home page,

 http://gridengine.sunsource.net/

[2] Torque home page,

http://www.supercluster.org/project

s/torque/

[3] Condor project home page,

 http://www.cs.wisc.edu/condor/

[4] NAS Parallel Benchmarks home

page,

http://www.nas.nasa.gov/Software/

NPB/

[5] Cluster Benchmarks Web Page,

http://www.mfn.unipmn.it/~mino/cl

uster/benchmarks/

