
ntop.org

Passively Monitoring
Networks at Gigabit Speeds

Luca Deri <deri@ntop.org>

Yuri Francalacci <yuri@ntop.org>

L.Deri and Y.Francalacci 2ntop.org

Presentation Overview

• Monitoring Issues at Wire Speed

• Traffic Filtering and Protocol Conversion

• Packet Capture and Classification

• Final Remarks

L.Deri and Y.Francalacci 3ntop.org

Monitoring Issues at Wire Speed

• Monitoring low speed (100Mb) network is
already available with common tools
libpcap based

• Problem Statement: monitor high speed (10
GB and over) network with common PC’s
(64 bit 66MHz PCI bus)

• PCI Bus Limited Bandwidth (64 bit bus
transfer limit 533 Mbit/s)

L.Deri and Y.Francalacci 4ntop.org

Proposed Approach:
Requirements

• Hardware and Software:
– Intelligent routers (e.g. Juniper M-series): they

are needed to run the network
– x86-based PCs for capturing traffic
– Linux/FreeBSD Operating System
– Standard 64 bit PCI Gigabit NICs (Intel)

L.Deri and Y.Francalacci 5ntop.org

Proposed Approach: Goals

• Passively monitor networks at Gbit speeds
with no (or very little) packet loss

• Traffic information generated in a standard
format (NetFlow/nFlow)

• Ability to monitor both IPv4/v6
• Provide accounting, performance

information

L.Deri and Y.Francalacci 6ntop.org

Architecture Overview

Juniper M-series

Local
Network

Traffic Mirror
Packet Filtering

Internet

nProbe

ntop

NetFlow

L.Deri and Y.Francalacci 7ntop.org

Traffic Filtering and Protocol
Conversion [1/3]

• Juniper routers provide:
– a built-in traffic-filter (firewall configuration

statement)
– traffic mirroring (forwarding configuration

statement)

L.Deri and Y.Francalacci 8ntop.org

Traffic Filtering and Protocol
Conversion [2/3]

• Traffic filter capabilities:
– IPv4 and IPv6 filter types available
– BPF-like filtering terms
– Filter complexity as user request

• Traffic filter term counter
– Possibility to define a counter for each term

(could be used for accounting reason)
– All counters could be read via SNMP

L.Deri and Y.Francalacci 9ntop.org

Traffic Filtering and Protocol
Conversion [3/3]

• Traffic mirroring advantages:
– Interface type independency (router provides

the protocol conversion)
– Sampling capabilities (if link speed >

monitoring NIC speed)
– Multilink mirroring (on the monitoring link can

be mirrored more than one line)

L.Deri and Y.Francalacci 10ntop.org

Juniper Accounting

• NetFlow (v5/v8) support
• Flexible flow aggregation (AS, service, etc)

• Complex accounting (e.g. using ntop) using
a PC connected on a mirror port

L.Deri and Y.Francalacci 11ntop.org

Packet Capture
and Classification: Issues

• Most Gbit network cards/OSs have not been
designed for capturing thousand of packets per
second in promiscuous mode

• Most NetFlow implementations (e.g. Juniper,
Cisco, Extreme Networks) handle up to ~10k
packet/sec and/or decrease dramatically switch
performances

• Flow collector performance is often rather limited
(load balancing)

L.Deri and Y.Francalacci 12ntop.org

Userland Packet Capture: libpcap

TCP,UDP

IP,ICMP

Ethernet
Device driverBPF driver

filter filter

sniffer sniffer

Packet Copy

kernel

L.Deri and Y.Francalacci 13ntop.org

Libpcap Limitations

• Multiple packet copies.
• Costly data exchange from kernel to user

space via system calls

• Severe packet loss if userland applications
cannot cope with packet/kernel speed

L.Deri and Y.Francalacci 14ntop.org

Solution 1: Kernel Packet Capture

TCP,UDP

IP,ICMP

Ethernet
Device driver

Packets Circular Buffer

sniffer

Packet Copy

Linux/BSD kernel

Kernel Module

Direct Packet Access
via mmap()Packets

L.Deri and Y.Francalacci 15ntop.org

Kernel Packet Capture: Code

packetBuffer = mmap(fd);

while(1) {
if(select(fd)) { /* There’s a Packet to read */

 packet = packetBuffer[slotId];
/* Handle packet here */

slotId = (slotId +1) % numSlots;
} /* select */

} /* while */

L.Deri and Y.Francalacci 16ntop.org

Kernel Packet Capture:
Limitations [1/2]

• Little (~10%) performance improvement
over pcap due to select() call (test
performed on a 10/100 MBit/sec link).

• Possible workarounds:
– Smart Select: as soon select() returns 1, keep

on reading. When there’s nothing to read call
select() again.

– Active polling: infinite loop until there’s
something to read on packetBuffer[slotId]

L.Deri and Y.Francalacci 17ntop.org

Kernel Packet Capture:
Limitations [2/2]

• Both workarounds to not improve performance
significantly.
– Smart Select:some select() calls are avoided.

– Active polling:user time vs. kernel time increases
significantly. At very high speeds (probability that
there’s something to read is high) it’s better than smart
select (see L. Rizzo).

• Drawback: user time increases causing packet
loss.

L.Deri and Y.Francalacci 18ntop.org

Solution 2: Kernel
Packet Classification

• Principles:
– Handle packets only inside the kernel (i.e. they

are not passed to userland applications).
– Pass flows, not packets, (flows << packets) to

userland applications.

L.Deri and Y.Francalacci 19ntop.org

Kernel Packet
Classification: Architecture

TCP,UDP

IP,ICMP

Ethernet
Device driver

Flows Circular Buffer

Flow Probe

Packet
Reference

Linux/BSD kernel

Kernel
Module

Direct Flow Access
via mmap()

Flows

L.Deri and Y.Francalacci 20ntop.org

Kernel Packet
Classification: Features

• Strong performance improvement over pcap due
to full in-kernel packet processing.

• No NIC (DMA)->kernel->userland packet copy
• No packet loss
• Speed limited by the CPU speed (ability to handle

interrupts)

• Simple userland NetFlow probe implementation

L.Deri and Y.Francalacci 21ntop.org

nFlow (http://www.nflow.org)

• New flow definition based on NetFlow
• Major features:

– Support for both IPv4 and IPv6
– Added VLAN tagging/MPLS label support
– Added (network and application) performance

and (passive) fingerprinting information
– Flow compression (gzip), non ripudiation

(MD5)

L.Deri and Y.Francalacci 22ntop.org

Final Remarks

• Packet filtering and protocol conversion in
hardware (Juniper).

• External accounting application based on a PC
with in-kernel NetFlow flow generation.

• Kernel-based nProbe (alpha-code) runs at
kernel/interrupt speed (pcap-based version
handles <= 250k pkt/sec)

