
The Open Kernel Environment
(opening up all levels of the processing hierarchy in a 'safe' manner)

Herbert Bos
Bart Samwel

Leiden University
{herbertb,bsamwel}@liacs.nl

http://www.liacs.nl/~herbertb/projects/oke/

H. Bos – Leiden University 1/15/03 1

What is this about?
● goals:

(1) allow 3rd party programming of lower levels
(2) safety enforced by software based isolation

● target:
environments with little hardware support for
isolating applications
– so, no MMU or privileged instructions
– example: Linux kernel, network processors

● fully optimised native code / speed

● safety/resource control
– CPU, heap, stack, API, etc

H. Bos – Leiden University 1/15/03 1

OKE: Open Kernel Environment
● explicit trust management + trusted compiler

• compiler: restrict code's access to resources depending on privileges

• code loader

• accepts code + authentication + credentials

• if match : load code of specific type

• type = with specific resource restrictions

•instantiation of type happens by parameterisation

•example: type = { MAX_HEAP < 1 MB }

•example: instantiation = { MAX_HEAP = 100 kB }

• restrictions

• CPU, heap, stack (recursion), APIs

• pointer, private data, access to memory bus (and more)

H. Bos – Leiden University 1/15/03 1

OKE Compiler

object src

credentials

ESC

OKE
Compiler
(trusted)

Network

OKE
support code

Module A

Module B

Module C

parameter

Object code

Compilation
record

policy

H. Bos – Leiden University 1/15/03 1

OKE Code Loader

object code

credentials

compilation
record

OKE
Code Loader

Network

OKE
support code

Module A

Module B

Module C

• credential-based authorisation used for other
SCAMPI operations as well

• compilation record is just another credential
• credentials are set explicitly and used

transparently:
scampi_set_authorisation_cred ()

admission
control resources

H. Bos – Leiden University 1/15/03 1

OKE Credentials:
delegated trust management

• delegated trust management using KeyNote and OpenSSL
• condition can be environment specific

KeyNote-Version: 2
Comment: trivial policy: authorise licensees for operation 'createFlow'
Authorizer: "POLICY"
Licensees: "rsa-base64:MEgCQQDMcZukqn3Wa4Z2y3wKljB/eoFnDRfNN\

B72OJLsfW6SnFRLKbXrgEnEP+7LevQEI0KsUq8NsgQmtx1btq\
lqyETdAgMBAAE="

Conditions: app_domain == "SCAMPI.MAPI" && op == "createFlow" -> "true";

KeyNote-Version: 2
Comment: OKE CL credential authorising client to load code of this type
Authorizer: "rsa-base64:MEgCQQDMcZukqn3Wa4Z2y3wKljB/eoFnDRfNN\

B72OJLsfW6SnFRLKbXrgEnEP+7LevQEI0KsUq8NsgQmtx1btq\
lqyETdAgMBAAE="

Licensees: "rsa-base64:ABCDE12345"
Conditions: app_domain == "SCAMPI.MAPI" && op == "createFlow" \

&& param2 == "10.0.0.1" -> "true";
Signature: "sig-rsa-sha1-base64:Du1uNVtNv8sAhjni/8UnzI9H+/VM\

9GnSM/ppgfEOAmO/QzSESYZgrwsMEPlzAFqnbNGfwusxlXEIz\

H. Bos – Leiden University 1/15/03 1

Environment Setup Code (ESC)

H. Bos – Leiden University 1/15/03 1

● policies implemented as ESC that is automatically
prepended to user code
– defines runtime support
– explicitly declares API the code can use
– removes the ability to

● declare/import new APIs
● access the 'private parts' of ESC
● perform unsafe operations

● 1 translation unit => whole program analysis
- part 1: macro definitions expressing parameterisation
- part 2: ESC
- part 3: user code

OKE programming language

H. Bos – Leiden University 1/15/03 1

● many different user 'classes' with different trade-
offs regarding the amount of restriction needed
– students
– system administrators
– anonymous

● avoid special-purpose languages
(rather: 1 language that can be customised)

● interfacing with rest of kernel important

● ideally something like C

● Cyclone (“a crash-free dialect of C”)

Language features for safety
● Cyclone: strongly typed, pointer protected, garbage

collected, and provides region-based mem protection

● A measure of safety is provided by combination of
existing Cyclone and new features

● Spatial pointer safety
– bounded pointers
– non-nullable pointers -> not checked
– 'normal' C pointers -> always checked

H. Bos – Leiden University 1/15/03 1

Language features for safety
● Temporal pointer safety

– region-based protection (e.g. to prevent returning the
address of a local variable), added kernel region

– RBP and GC work well for Cyclone-only, but present
safety issues when interacting with C code

– for example: suppose an OKE module holds a pointer to
kernel memory

– OKE solution:
● delayed freeing plus (place blocks on kill list)
● new GC: O(n) in # of allocated blocks)
● GC round just prior to activation of the OKE module (hmmm...)
● nullifies pointers or kills modules
● delayed freeing: not always needed

H. Bos – Leiden University 1/15/03 1

Language features for safety
● Language restrictions

forbid construct, e.g.:
– forbid extern “C” // no import of C APIs
– forbid namespace ... // no access to specific

namespace
– forbid catch ... // do not catch certain

exceptions

● API and entry point wrapping
– potential entry points explicitly declared

(pointers can only be taken of functions declared extern)
– automatically wrapped in ESC (“wrap extern”)
– kernel APIs may also be wrapped

H. Bos – Leiden University 1/15/03 1

Language features for safety
● Sensitive data protection at compile time

locked construct
– sharing: parts of a data structure should be inaccessible
– normal solution: anonymising
– locked variables cannot be used in calculations and cannot

be cast
– may be declared const

H. Bos – Leiden University 1/15/03 1

Language features for safety
● Stack overrun protection

– some dynamic checking needed (but flexible)
– 2 parameters: bound and granularity

H. Bos – Leiden University 1/15/03 1

OKE features for safety
● timeout protection

– multiple solutions
● dynamic checks in backward jumps
● timer interrupt: applied in Linux kernel
● other: applied in IXP1200 network processor

– timer interrupt
● on return from interrupt: check if timeout is detected
● if so, jump to callback function registered by ESC
● this function may throw exception
● takes into account if code is executing kernel or OKE code

H. Bos – Leiden University 1/15/03 1

FEC overhead over C

H. Bos – Leiden University 1/15/03 1

Audio resampling overhead over C

H. Bos – Leiden University 1/15/03 1

OKE sub-projects
● OKE Corral (“OKE, Click and a dash of active networks”)

● Diet OKE (“network processors”)

OKE Corral:

H. Bos – Leiden University 1/15/03 1

HOKE-POKE: applying OKE concepts to multiple levels

push monitoring functionality to the microengines
• counters
• filters

H. Bos – Leiden University 1/15/03 1

Conclusions

Advantages
OKE may form a basis for resource control even when there are multiple,
mutually mistrusting parties
OKE provides resource control if required, while not incurring overhead, if not
OKE authorisation procedures can be applied throughout SCAMPI
OKE overhead can be very small indeed

Disadvantages
runtime resource control comes at a runtime cost
writing ESC is complex

In SCAMPI
// authorise any operation
scampi_set_authorisation_creds(priv, pub, creds)

// load code (OKE or other) anywhere
scampi_load_code (id, type, location, param)

� scampi_unload_code (id)

H. Bos – Leiden University 1/15/03 1

Diet OKE
– multiple application simultaneous access to microengines
– application granularity: microengine

● killing applications running on MEs
– by control processor (StrongARM)

● packet access
– prefiltering

– locked fields (compile time)

● memory access
– static memory allocation + protection in API

– bounds checking at runtime

●stack is not a problem
H. Bos – Leiden University 1/15/03 1

Diet OKE
●application framework: granularity = microengine

●1 ME for packet reception

●5 MEs for applications

●target: network monitors

●third parties can “plugin” their own functions

●4 threads

H. Bos – Leiden University 1/15/03 1

Diet OKE
●packets received in circular buffer structure in SRAM +
SDRAM

●applications can read packets whenever data is available

●fields:
– Count
– flags: W, R*, Done*

●mopping mechanism....

H. Bos – Leiden University 1/15/03 1

receive

mop

Diet OKE Throughput

H. Bos – Leiden University 1/15/03 1

Diet OKE Applications

H. Bos – Leiden University 1/15/03 1

Garbage collector
● mark and sweep, assumes strong typing

● automatically generated code based on whole program analysis
(compiler front-end)

● compiler detects which types can be allocated by module

– by enumerating types of new and malloc
– generates marking functions for each type
– defines how to scan mem block of specific type for pointers
– contains call to GC for every pointer in type
– mem allocation calls: pass * marking function to mem

subsystem
– GC time: call marking functions for each block

H. Bos – Leiden University 1/15/03 1

	The Open Kernel Environment(opening up all levels of the processing hierarchy in a 'safe' manner)
	What is this about?
	OKE: Open Kernel Environment
	Diet OKE Throughput
	Diet OKE Applications

