One-way Delay Measurement Using NTP Synchronization

Vladimir Smotlacha

TNC-2003

One-way Delay

- theory (RFC 2679): difference between time of last bit of packet "on-wire" at receiver and first bit of packet "on-wire" at sender
 - requires specialized HW
 - reflects OWD at physical layer
- practice: OWD = Tr Ts
 - Tr timestamp of packet receiving
 - Ts timestamp of packet sending
 - OWD measured at application layer
 - Ts might be included into packet -> only one packet
- problem: time synchronization at both sites

Methods of Synchronization

- external time source
 - receiver of time information (GPS, DCF, Loran-C, WWV)
 - atom clock (cesium, rubidium)
 - exact, high accurate (μs order)
 - expensive, not scalable, external system installation
- synchronization via network (NTP)
 - NTP server
 - cheap, scalable
 - sensitive to network parameters
 - lower accuracy, difficult to estimate real accuracy

Algorithm of NTP

$$\delta = (t3 - t0) - (t2 - t1)$$

$$\theta_0 = ((t1 - t0) + (t2 - t3)) / 2$$

$$\theta_0 - \delta/2 \leq \theta \leq \theta_0 + \delta/2$$

- symmetrical delay assumed
- uncertainty \leq half of round-trip delay

Sources of NTP Inaccuracy

- internal origin
 - locked loop phenomenon
 - system reports as known offset can be used for correction
- filterable external origin
 - jitter of propagation delay
 - asymmetry in delay due to accidental network load
- unfilterable external origin
 - asymmetry in delay due to long time network load
 - asymmetry in routing

Configuration for High Accuracy

- multiple NTP servers
 - higher robustness
 - Selection and Clustering algorithm
 - accuracy decreased by several milliseconds
- one NTP server
 - vulnerability
 - high accuracy
- default polling interval
 - self-adjusted: up to 1024 s
- explicit polling interval
 - best accuracy: 16 64 s

OWD Measurement Setup I + II

Measured Values

- Ts timestamp of packet sending (from application)
- Tr timestamp of packet receiving (from application)
- Os offset of sender clock (reported by NTP)
- Or offset of receiver clock (reported by NTP)
- Ps exact offset of sender clock (PPS capture log)
- Pr exact offset of receiver clock (PPS capture log)

Calculated Values

- Raw one-way delay obtained from CRUDE log OWD_r = Tr - Ts
- One-way delay corrected by estimated NTP offsets
 OWD_n = Tr Or (Ts Os)
- Exact one-way delay calculated from GPS time OWD_e = Tr - Pr - (Ts - Ps)

Results (setup I)

green - exact OWD red - measured OWD

red - recalculated OWD

Results (setup II)

green - exact OWD red - measured OWD

red - recalculated OWD

Results (setup IIa)

green - exact OWD red - measured OWD

red - recalculated OWD

OWD Measurement Setup III

Results (setup III)

B -> A (via TELIA)red: measured OWD (about 28ms)green: exact OWD (about 37 ms)

A -> B (via GEANT) red: measured OWD (about 28ms) green: exact OWD (about 20 ms)

Conclusions

Setup I (local NTP server in each site of measurement)

- recalculation of OWD improves accuracy
- robust, estimated error in the order of 100 us
- assumed low offset between both NTP servers
- well suitable for OWD measurement

Setup II (one common NTP server)

- accuracy depends on NTP server position
- estimated error less than 1 ms (symmetric routing)
- careful setup of ntpd necessary (differs from default)
- suitable for OWD measurement

Conclusions (cont.)

Setup III (one NTP server, asymmetric routing)

- stable asymmetry in OWD can not be detected
- mean value of measured OWD in both directions is the same
- estimated error of measurement is one half of the asymmetry
- quite unsuitable for OWD measurement

Suggested NTP configuration

- never use multiple NTP servers per box of measurement
- careful selection of NTP server
 - symmetric path between NTP server and site of measurement
 - low RTT between NTP server and site of measurement
 - high and long time stability of NTP server
 - high accuracy of NTP server (stratum-1 or stratum-2)
- adjusted polling interval
 - example: server <NTP server> minpoll 6 maxpoll 6

Thank you