
Certificate Retrieval from OpenLDAP

The X.509 attribute Parsing Server (XPS)

d.w.chadwick@salford.ac.uk

The Problem
� PKI clients cannot search for specific X.509

attributes stored in LDAP directories, e.g.

� Find the encryption PKC for the person whose email

address is fred.bloggs@myorg.com

� Find the CRLs issued by OU=MyCA, O=MyOrg,

C=US after 9am, 20March 2003

� Find the AC for David Chadwick that contains the role

attribute

� PKI clients currently can only store and retrieve

X.509 attributes, by knowing the Distinguished

Name of the entry they are held in � but often the

clients do NOT know the DN of the entry

The Current Workaround

� PKI vendors such as Entrust, suggest that
the PKI/LDAP administrator extracts the
email address of the PKC subject from the
SubjectAltName field, and store this in an
email attribute in the same entry as the
PKC, and then the PKI client searches the
LDAP server for the email address and asks
for the PKC to be returned from the same
entry

Automating and Extending the

Workaround - Attribute Extraction
� A front end X.509 attribute Parsing Server (XPS) parses

the X.509 attribute to be stored, and breaks it up into a
set of LDAP attributes that use existing LDAP syntaxes

� XPS then creates a new entry for the X.509 attribute in
the LDAP server, which comprises the original X.509
attribute and the set of extracted attributes

� The LDAP server adds the extracted attributes to its
indexes, using existing mechanisms

� The PKI administrative client (i.e. the CA) talks to the
new XPS server instead of the LDAP server

� PKI retrieval clients search the LDAP server for the
extracted attributes and ask for the X.509 attribute to be
returned (as now)

Attribute Extraction

LDAP

directory

CA/AA

Search for Att 1.. Att i

Return X.509 attribute

XPS

server

Att1, Att2�Att n

+

[]

The DIT Structure

� PKCs and ACs are held in child entries

� CRLs are held in child subtrees

dc=myorg
dc=com

ou=people

cn=my entry

Encryption PKC

Signing PKC
AC containing roles

ou=My CA

dc=myorg

dc=com

CRL

CRL entries

Naming the X.509 attribute entries

� CRL entries are named with the
x509crlThisUpdate attribute

� CRL revoked certificate entries may be named in
one of 3 ways
� x509serialNumber+x509issuer

� x509isssuerSerial

� x509serialNumber

� Certificate Entries may be named in one of 3 ways

� x509serialNumber+x509issuer

� x509isssuerSerial

� x509serialNumber

The XPS Configuration File
� XPS config options are held in slapd.conf between the

global configuration directives and the backend definitions

� All config keywords are case sensitive. Default values in red

� EnableXPS [yes|no]

� If no, all other XPS config options are ignored

� ldapurl [NULL|<URL of LDAPv3 server>]

� XPS can act in standalone mode or combined mode

� pkcTypes [userCertificate, userCertificate;binary,
cACertificate, cACertificate;binary]

� Lists the incoming public key attribute types to be trapped

� acTypes [attributeCertificateAttribute,
attributeCertificateAttribute;binary]

� Lists the incoming attribute certificate types to be trapped

� crlTypes [certificateRevocationList;binary, etc.]

� Lists the incoming CRL attribute types to be trapped

XPS Configuration Options (cont)

� DuplicateAttribute [yes|no]

� Indicates if X.509 attribute should be stored in parent entry as well

� RevokedCertificateEntries [yes|no]

� Indicates if subtree of entries should be created, default no

� RevokedRDNformat [x509serialNumber+x509issuer|
x509isssuerSerial | x509serialNumber]

� Only applies if RevokedCertificateEntries is yes

� CertRDNformat [x509serialNumber+x509issuer |
x509isssuerSerial | x509serialNumber]

� The RDN of the newly created certificate entries

� Walpath [path]

� Where to store the WAL files. The default path if this parameter is
missing, is /usr/local/var/xps/wals/

XPS Config options (cont)

� XPSerrorlog [path/filename]

� The default file is /usr/local/var/xps/error.log

� INCLUDE [x509attrtypes.txt]

� A file holding the mappings between ASN.1 type references and

their equivalent LDAP attribute types. Each line should be in the

format: define_attr ASN.ref LDAPattType e.g.

define_attr certificate.tbsCertificate.signature.algorithm

x509signatureAlgorithm

Only the LDAP attributes specified in this file will be

stored in the X.509 attribute entries created by XPS

Parsing the Incoming X.509

Attributes
� When any of the attributes in the 3 lists from the

config file are encountered, one of the following
routines is called

� x509AC_2_mods() - converts an Attribute
Certificate into a list of Modifications

� x509CRL_2_mods() - converts a Certificate
Revocation List into a list of Modifications

� x509PKC_2_mods() - converts a Public Key
Certificate into a list of Modifications

� These routines are automatically created by an
ASN.1 compiler we have written

The ASN.1 Compiler
� Built using the compiler generator tools flex and bison.

� Flex is based on UNIX lex and builds a lexical analyzer which is used
to process the text input to the complier

� ASN.1 built-in type keywords used by flex are contained in input file
asn1.lex

� Output from the lexical analyzer is a sequence of tokens and
corresponding values that are used by the compiler

� The compiler is built using the tool bison, a compiler generator based
on UNIX tool yacc

� The definitions for the compiler are contained in input file asn1.y

� Bison does not automatically generate parse trees and output code.
These must be added to the definition file, in the form of embedded
actions, to build a parse tree, and also a code generator. After the input
has been scanned and a parse tree built, the code generator walks this
tree and translates this into output code.

� Compiler is called with two arguments: name of file containing X.509
attribute ASN.1 type definition, and file to receive generated C code

The WAL

� XPS is acting as a transaction server, since one incoming
request creates a set of outgoing requests to the backend
LDAP server

� Therefore we need a Write Ahead Log

� One WAL file is opened per incoming operation

� Before any change is made to the backend LDAP server,
this change is written to the WAL in LDIF format

� Add entry, only the DN is stored in the WAL

� Remove entry, the entire entry is read and the contents stored
in the WAL

� fflush() is called after every write to the WAL

� When the last backend operation has completed
successfully the WAL is deleted

WAL File names

� Must be unique

� Filename is wal<32Ascii chars>.log

� E.g. walKHWIHfdsafJG420ghdlT4YG.log

� Ascii chars are created using a 128 bit MD5 hash

of the DN of the LDAP entry to be modified

� lutil_MD5Init(), lutil_MD5Update(), and

lutil_MD5Final() functions

� This provides concurrency control as well

Recovery

� When XPS first starts, if a WAL file is found, then a
recovery log is opened (XPSrecovery.log)

� The WAL is opened, marked �recovery in progress�
and each record is acted upon

� If it�s a DN, the entry is deleted

� If it�s an entry, the entry is added

� If successful the record is deleted. If it fails the
record is left there

� Each action is written to the log file, along with a
success or fail status

� If recovery fails, the LDAP administrator will have
to tidy up manually using the log file and WALs

Operation of XPS

� If EnableXPS is No, all operations bypass it and

given to OpenLDAP

� If EnableXPS is Yes, then Bind, Unbind, Compare,

ModDN, Abandon, and Search bypass it and are

given to OpenLDAP

� If Enable XPS is Yes, ADD, DELETE, and

MODIFY Requests are trapped and acted upon as

follows

Add Request
� First check if request contains any X.509 attributes, if not,

pass straight to OpenLDAP

� Call appropriate x509***_2_mods() function for each
trapped X.509 attribute

� Mods are turned into slap_mods2entry()

� DN of parent and child entries are added to WAL

� If duplicateAttribute is false, the X.509 attributes will be
removed from the parent entry

� be->be_add)() is called for the parent entry

� If successful, be->be_add)() is repeated for each child
entry

� If any error, OpenLDAP is rolled back and error returned

� Finally, the WAL is deleted.

Delete Request
� Full subtree search from DN of entry-to-be-deleted is

issued, with filter of object class present, requesting * +

� If no entries returned, Delete either passed to OpenLDAP

� If all entries except base are of object class x509base,
Delete will be processed, else it is passed to OpenLDAP

� If a returned entry has the hasSubordinates operational
attribute = FALSE, the entry will be saved in the WAL
using Entry2wal() and then deleted from the directory using
(be->be_delete)()

� If hasSubordinates is TRUE, the entry is held pending until
all the FALSE ones are processed, then it is processed

� Once all entries have been deleted, the WAL is deleted

� If any delete fails, the deleted entries are restored and an
error sent to the user.

Modify Request (Add)

� XPS first checks if there are any X.509 attributes in

the modifications. If there are none then request is

passed to internal server or referral is returned

� Processing now depends upon type of modification

� For Add, a list of modifications for each X.509

attribute is created using appropriate

x509***_2_mods()

� The DNs of all the children and grandchildren are

added to the WAL

� The entries and child entries are then added to the

directory. Move to next modification

Modify Request (Delete)
� If the modification is delete, do a 1-level Search

from the to-be-modified entry for the attribute type
(or value) to-be-deleted.

� Store returned entries in the WAL

� If CRL revoked entries are present, do a 1-level
Search from each returned CRL entry and store
these in the WAL. Then delete them from the
directory.

� Delete initial returned entries from the directory

� If any errors, then add all the deleted entries back
into the directory

� Move to next modification

Modify Request (finish)
� Replace is equivalent to delete the attribute and

add the listed values

� Once the set of modifications have been completed

successfully, the original Modify request has its

X.509 attributes removed (if duplicates is false)

and it is sent to the directory (unless there are no

attributes left)

� As the Modify is atomic, it does not need to be

written to the WAL. If it succeeds, delete the

WAL, if it fails, then re-apply the changes

recorded in the WAL

Governing Internet Drafts

� Gietz, P., Klasen, N. "An LDAPv3 Schema for X.509
Certificates",<draft-klasen-ldap-x509certificate-
schema-02.txt>, March, 2003

� Chadwick, D.W., Sahalayev, M. V. "Internet X.509
Public Key Infrastructure - LDAP Schema for X.509
Attribute Certificates", <draft-ietf-sahalayev-pkix-ldap-
ac-schema-00.txt>, February 2003

� Chadwick, D.W., Sahalayev, M. V. "Internet X.509
Public Key Infrastructure - LDAP Schema for X.509
CRLs", <draft-ietf-pkix-ldap-crl-schema-00.txt>,
February 2003

Attribute Extraction

Pros Cons
� Existing LDAP servers do not need to

be modified

� Supports indexing servers based on
fields within PKI attributes

� Supports enhanced matching (searching
on multiple fields within a single PKI
attribute)

� XPS has been built into OpenLDAP,
and can either front end an existing
LDAP server or be a combined
XPS/LDAP server

� PKI clients need less modification, and
might just need re-configuring with the
new attribute types

� The European and US academic
community chose this solution

� Storage requirements in the
LDAP server are doubled
[or tripled]

� Adding new X.509 attribute
syntaxes or new certificate
or CRL extensions means
the XPS code has to be
recompiled and rebuilt

� Cant search on multiple
X.509 attributes, or an
X.509 attribute and other
attributes in the user�s entry
(needs families of entries)

� CAs and clients have
different views of the DIT

