Achieving reliable high performance in LFNs
(long-fat networks)

Sven Ubik, Pavel Cimbal
CESNET

End-to-end performance

e E2E performance is a result of interaction of all computer
system components:

- network, network adapter, communication protocols,
operating system, applications

e Decided to concentrate on E2E performance on Linux PCs
* Primary problem areas:
- TCP window configuration

- OS / network adapter interaction
- ssh / TCP interaction

TCP windows configuration
Linux 2.4: how big are my TCP windows?

getsockopt(); resulting windows rescaling and clamping
SO_RCVBUF [¢—! | advertised win «— vzwineraie appwiton
SO_SNDBUF [¢— | sender’s win [¢— Snd_cwad, snd cwhd_camp
setsockopt(); sysctl max clamping doubling! internal min values
SO_RCVBUF [—» rmem_max —_| *2 —» MIN_RCVBUF
SO_SNDBUF »| wmem_max |—»| *2 —»| MIN_SNDBUF
sysctl defaults

tecp_rmem|1]

used without checks

tcp_wmem|[1]

Throughput with large TCP windows

Interaction with network adapter must be considered:

e large TCP sender window allows large chunks of data
submitted from IP through txqueue to adapter

e full txqueue -> send_stall() to application and context switch

* no problem as long as txqueue is large enough for a timeslice

txqueuelen

IP layer |—— — NIC

for Gigabit Ethernet adapter and standard Linux system timer:
txqueuelen > 1 Gb/s * 10 ms / 8 bits / 1500 bytes = 833 packets

ifconfig ethO txqueuelen 1000

Throughput with large TCP windows, cont.

=38

throughput [Mb/s]

an
=

, tquf.leuelenf=100 : :
| I i i I I i |
Edk 128k 2526k 512k 1M c M 4 M 2M 16HM

TCP window [bytes]

=D

Using “buffered pipe” is not good

Router queues must be considered:

* No increase in throughput over using ,wire pipe”

e Self-clocking adjusts sender to bottleneck speed, but does not
stop sender from accumulating data in queues

* Filled-up queues are sensitive to losses caused by cross-traffic

e Check throughput (TCP Vegas) or RTT increase ?

rwnd<=pipe capacity
bw=rwnd/rtt

rwnd>pipe capacity
bw~(mss/rtt)*1/sqrt(p)

Flat lower bound
RTT=45ms
Fluctuations up to
RTT=110ms
Bottleneck
installed BW=1 Gb/s
Buffer content ~8 MB

Other configuration problems

TCP cache must be considered

k

-
o
=
=

—
an] =
= =
= =

cwndy ==thresh

owin development | Tine s
rwin development

initial ssthresh locked at 1.45 MB
echo 1 > /proc/sys/net/ipv4/route/flush

Bandwidth measurement and estimation
Test paths: cesnet.cz <--> uninett.no, switch.ch
pathload over one week:

e 27% measurements too low (50-70 Mb/s)
* 7% measurements too high (1000 Mb/s)
* 66% measurements realistic (750-850 Mb/s),
but range sometimes too wide (150 Mb/s)
pathrate: lots of fluctuations

UDP iperf: can stress existing traffic

TCP iperf: more fluctuations for larger TCP windows

Measured Available Bandwidth

Bandwidth measurement and estimation, cont.
cesnet.cz -> switch.ch

FAvailable Bandwidth Cesnet

Clakbl» —-* ezmpZ.switch.ch

1e@a

1488 —

1z@|

la6a —

saa

s

1@.835
a@: 8@

l@.@835 11.835
1288 B@:8a

FPathload with 18Mbps Resolution ——
Pathrate Cinstalled capacityl —e—
iperf TCP window ZkE —e—

11.85
12:88

12.85
B@E: 8@

12.@3 1z.@5
12:@8 a@:aa

iperf TCPF window 1ME ——

iperf TCF

window 4ME —s—

1z.@85 14.@85 14.@85
12:88 a@:aa 12:08

iperf TCP window 16ME —s—
iperf UIDFP =tress test —a—

Measured Availakle Bandwidth

Bandwidth

ja=gsic]

uninett.no -> cesnet.cz

Available Bandwidth UniHett -» Cesnet (legol

measurement and estimation, cont.

S6a -~

&8 -~

488

zea

caa

18a

a & & & & & & & &
1@.835 1@.835 11.835 11.85 12.85 12.@83 1z2.@5 1z.@85 14.@85 14.@5
B@: 68 12:88 B@: 68 1&2:88 BE: 08 12:88 a@:aa 12:88 a@:aa 12:88

Fathload with 18Mbps Resolution ——
Pathrate {ins=talled capacityl) —w—0
iperf TCF window ZkE —%—

iperf TCP window 1ME ———

iperf TCP window 4MEB ——

iperf TCP
iperf UDF

window 16ME —s—
=tress test —a—o0

ssh performance
Cesnet -> Uninett, 1.5 MB window, 10.4 Mb/s, 9% load CPU

sequence number development - rwin not utilised

ssh performance, cont.

SCP —\ SFTP W ces { SSH

PROTOCOL 2.0 SSH SESSION CHANNEL
< CHAN_SES_WINDOW_DEFAULT (~128kB) >
PKT 1 PKT 2 | PKT N2 PKT N1 PKT N
Performance impact: < >
BW < WIN_DEFAULT / RTT CHAN_SES_PACKET_DEFAULT (~32kB)
I
/
pk 1 pk 2 pk 3 pkM3 pkM2 pkMI pkM /
Latency / interactivity impact: TCP MSS Non MSS Nagledelayed packet pk M

Small WIN_DEFAULT != M*MSS & Nagle’s algorithm > additional RTT for whole PKT N

(+ Additional possible performance impact: Interferences TCP_WIN & WIN_DEFAULT)

TCP

ssh performance, cont.
Bw=1 Gb/s, RTT=45 ms, TCP window=8 MB, Xeon 2.4 GHz

cHE | | | | | | | | 1 laa
Throughput
188 - sender L.
_ ek Feceluver _ o
~
o 148 - 7d »
= L
—o1g2@ | - ke
" e
i 188 |- - oM E
'% =15 - 48 _
= L
u)
g ElEl [—1 3E| L
<
48 - 28
=y - 18
A | | | | | | | | g

5 1A c H S H 44 o =15 - g5 =15
S5SH Hindow [32 KB khlock=s]

ssh performance, cont.
CHAN_SES_WINDOW_DEFAULT=40 * 32 kB blocks, 85% CPU load

sequence number development - rwin utilised

Conclusion

e Large TCP windows require other configuration tasks
for good performance

 Buffer autoconfiguration should not just conserve memory
and set TCP windows ,large enough®, but also ,,small enough®

* ssh has a significant performance problem that must be
resolved at the application level

* Influence of OS configuration and implementation-specific
features on performance can be stronger than amendments
In congestion control

Thank you for your attention http://staff.cesnet.cz/~ubik

