Specialized Network Topologies for Efficient Communication in Computer Clusters

Urban Borštnik, Milan Hodošček, and Dušanka Janežič

urban@cmm.ki.si

National Institute of Chemistry

Ljubljana, Slovenia

Why Clusters?

Use in computational methods

- Replace traditional supercomputers.
- Low cost.
- (Off-the-shelf) availability.

Precursors are networked workstations.

Developed in the last couple of years

- Personal Computers attained supercomputer performance.
- Cheap & fast networking equipment.

Networking Clusters

Networking speed and latency problems.

Switches

- widely-used;
- easy implementation;
- everyone communicates with everyone.

However

- costly;
- not expandable.

Networking Clusters: Special Topologies

Special topologies

- Point-to-point connections form topology.
- Various types (mesh, hypercube, full graph, ...).
- Routing: practically needs a switch.
- Special software to take advantage of topology (software conforms to hardware).

Or, we can design a topology to effi ciently perform some types of data transfer. (Hardware conforms to software.)

Topologies

Logical topology

Describes the software communication pattern.

Physical topology

Describes the physical connection pattern.

The physical topology should cover at least the logical topology.

CHARMM and CMPI

CHARMM for molecular dynamics simulation of macromolecules

- Primarily uses 2 data-transfer operations.
- Uses own CMPI library for collective operations.

Distributed Vector Global Sum, Distributed Vector Global Broadcast

- DVG Sum: Vectors added, resulting vector left scattered across nodes.
- DVG Broadcast: Scattered vector broadcast to all nodes.

CMPI Collective Operations

Effi cient hypercube implementation

Different amount of data is transferred in each dimension.

Hierarchical Hypercube

A Hierarchical Hypercube topology is a hypercube with links of different speeds for different dimensions.

- DVG Sum & Broadcast transfer ¹/₂ data in each successive dimension.
- Hierarchical hypercube has the fastest links for the 1st dimension, and progressively slower for the other dimensions.
- Ideally no link saturated, no link with spare capacity.

CROW5

Uses hierarchical hypercube topology to connect 16 SMP PCs

- Dual Athlon MP-1600+
- Gigabit ethernet cards
- Fast ethernet switch

1st dimension: system bus.

2nd dimension: point-to-point gigabit Ethernet.

3rd–5th dimensions: fast Ethernet switch.

(Alternate view: increasing performance of switched PCs with point-to-point links.)

CROW5 topology

- 1st dim.: Bus (>2660 Mb/s)
- 2nd dim.: Gigabit Ethernet (1000 Mb/s)
- 3rd, 4th, 5th dims.: Fast Ethernet (100 Mb/s)

Comparison to Other Network Types

Benchmark: 100 step dynamics simulation of protein HIV Integrase, 1 fs step size.

Table of speedups (as compared to 1 processor):

Topology	Number of Processors				
	2	4	8	16	32
Hier. Hypercube	1.8	3.0	4.4	7.1	9.2
1 Gb/s switch	1.8	3.1	4.6	0.8	10.7
100 Mb/s switch	1.8	2.9	4.0	5.4	6.3

Comparable to a gigabit switch.

Faster than just an ethernet switch.

Redundancy Features

Computers connected with both point-to-point links and hub/switch.

- Redundant links if one fails.
- Possible redundancy between any computers in the cluster.

Conclusions

- Clusters are very suitable for numerically intensive calculations.
- An appropriate topology can provide a noticeable performance improvement.
- We developed a hierarchical hypercube topology based on communication patterns in software to speed up computation.
- The hierarchical hypercube offers a performance improvement over standard switching technology for only a small additional cost.

Acknowledgement

Ministry of Education, Science, and Sport of Slovenia