

IPv6 and the Grid Work in Progress

S.Bhatti, P.Kirstein, S.Venaas,
P.O'Hanlon and S. Jiang
University College London and UNINETT

Plan

- Why is IPv6 important for the Grid
- What has been our progress in porting Globus to the Grid

- Grid is ... a second chance to do distributed computing!
- Many users:
 - Pure and Applied Sciences
 - Distributed Processing, High Performance
 - e.g. High Energy Physics, Bio-informatics
- Lots of investment (EU, national)
- Highly distributed networking is vital!
 - It must track the best networking available

600 Why bother with IPv6 for grid will

- All better IPv4 features will come into later IPv6 implementations but in a more integrated way
 - More likely to be standardly available in IPv4
 - Availability and functionality of implementations variable
- Examples of the above are already
 - Mobility support, security support, multicast and reconfiguration
- Large address space is used in a far better way
 - 128 bit addresses allows globally unique device addresses
 - Even many addresses per device allows tailoring of device

- Will use 64 bit unique to device, 64 bit for network
 - Allows separation of addressing and routing
 - Can bind certificates to device address even when mobile
 - May allow convergence with UMTS methods of security
- Removes the need for NATs
 - Allows better end-end security
 - A fundamental problem in the grid environment
 - Removes artificial separation of client and servers
 - Fundamental to grid
 - Application protocols can rely on unique correlation of addresses and devices
 - More freedom in design of application protocols

*6not*Specific Instance of IPv6 Addressing

- IPv6 Addressing and routing
 - Global addresses for all end-systems (64 bits for the end systems)
 - Better addressing/routing scalability for all
- Mobile IP support in Basic Standard
 - Simplified addressing (mobile address has 64-bit prefix)
 - Simplified routing
 - Better than MIPv4
 - Inbuilt Security for Updates
- Multi-homing feasible, but still being defined

IPv6 Configuration & Performance

- Intrinsic support for Auto-configuration
 - Stateless (link-local, site-local) and state-full
 - Plug and Play
 - Neighbour discovery
- Performance potentially much better
 - Simplified header and header processing
 - Hardware assist just coming in commercially

Security & Group communications

- Security in Basic Standard
 - IPsec: transport-level and tunnelling
 - AH: authentication
 - ESP: privacy
- Multicast in Basic Standard
 - Cleaner multicast address usage
- Anycast
 - Still being refined

Globus IPv6 Port Work in Progress

Where are we at UCL in making the main Grid tool, Globus, IPv6-enabled

Making Globus GT2 IPv6 Enabled

- GT2 was the previous release
- Mainly written in C
- Had specific routines using calls to IP in Globus I/O (GIO)
 - Most modifications were in GIO
 - Worked on TCP/IP and UDP/IP porting
 - UoS started TCP/IP, UCL continued both IP ports
- Fairly straightforward to make either IPv4 or IPv6
 - Problem was to make it dual stack

6net

Current Globus GT3 Activity

- GT3 is current release, mainly written in Java
- Initially tested with JDK1.3 (not IPv6 enabled)
- Moved over easily to JDK1.4 (IPv6 enabled)
 - Great advantage that most code was Java
- In following slides things done are underlined

Different Aspects of Activity

- UCL
- Java SDK Ensure working with JDK1.4
 - Tested mainly in IPv4 mode
 - Only places where IP is called need testing for IPv6
- PostgreSQL Installed IPv6 patch
- Tomcat Use lightweight version, with JDK1.4
- OGSA Relevant Network Communication Protocols
 - Probably needs little work
 - Need to know which parts are IPv6 sensitive

Other Activities

13

- GT3 Stand-alone Web Container
 - Used only for tests, but may need upgrade
- GT3 Server
 - Needs some work on where IPv4 calls are made
- GT3 Client
 - Needs some work on where IPv4 calls are made
- Tracking Globus changes

Non-Web Services

- OGSA is web based little problem if correct initialisation JDK parameters are used
- Some other components not yet web based
 - Need more detailed analysis to identify changes
 - Grid FTP is an example of such a service
- The services needed are dependent on method of usage for specific applications

OGSA Activity

- GT3 is an implementation of the OGSA architecture
 - Includes sample OGSA services in distribution
- Will need to write own services
 - Initially just to exercise system
 - Later to make use of IPv6-specific facilities
- Have some high level media gateways
 - May make these operate in Globus environment

Longer Term Aims

- Making Globus IPv6-enabled is only a beginning
- Aim is then to use the underlying services that are thereby enabled in a uniform way
 - Though transition services must be deployed at first
 - Will require considerable thought to do seemlessly
- It is an IETF assumption that the following services will be universally available
 - VPN/IPsec support, mobility, multicast, QoS, IPv6 autoconfiguration and addressing
- Nevertheless it is not clear that all will be fully deployed

Full availability of IPv6 will allow provision of better Grid services