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Abstract—
The PC hardware architecture and commodity op-

erating systems such as Linux or Microsoft Windows
are dominant in end-host infrastructure in the current
Internet. It shows that many performance problems
in high-speed long-distance networks (also called long-
fat networks or LFNs due to high possible volume of
outstanding data between the sender and receiver) are
caused by improper behaviour of end hosts, rather than
by the network itself. Understanding of the behaviour
of networking support in commodity operating systems,
networking applications, their mutual interaction and
their interaction with a computer network is necessary
to identify and resolve these problems. Our goal is to
identify the most significant problems and suggest pos-
sible solutions. Many advanced Internet users, requir-
ing high network performance, use the Linux operating
system. Therefore, we decided to concentrate on net-
working support in Linux. Particularly, we will show
that just setting large TCP buffers and modifying TCP
congestion control AIMD parameters is not sufficient
to reliably achieve high throughput. We will show that
smart window size moderation is required not to allow
too large TCP windows. We will also describe an im-
portant performance problem in scp, a commonly used
network file copy program.

I. I NTRODUCTION

More than 95% of data transferred over the Internet
is currently carried in TCP protocol. Therefore, per-
formance of TCP is essential for overall Internet per-
formance. The current state of networking support in
all commodity operating systems after the default in-
stallation procedure and system boot is that they per-
form very poorly over LFNs.

TCP uses two mechanisms to prevent congestion of
receiver and network [7]. First, the TCP sender uses
flow control, driven by the receiver-advertised window
(rwin ) to limit the sending speed so that the receiver
can keep up with incoming packets. Second, the TCP
sender uses congestion control, driven by its computed
congestion window (cwnd) computed based on con-
gestion signals to limit the sending speed so that the
network is not congested.

Both windows (rwin andcwnd) can extend only
up to the size of the TCP buffer on the respective side
of the connection. The default size of sender and re-
ceiver TCP buffers in most commodity operating sys-
tems is 64 kB. This is insufficient for LFNs, which re-
quire high volume of outstanding data to achieve high
performance.

In most cases, increasing the size of TCP buffers
helps to increase throughput. Several tools have been
developed in the form of kernel patches or daemons to
help find buffer sizes required for particular network
conditions [1], [2], [9]. However, even with these
tools proper setting of TCP buffers is a procedure re-
quiring a lot of manual installation and configuration.
Therefore, automatic tuning should be implemented
by default in future versions of commodity operating
systems.

However, this tuning should not only save mem-
ory by not allocating large buffers by default for all
connections and care about TCP windows to be large
enough. It should also dynamically moderate receiver
or sender window so that the transmission does not
unnecesarily fill router queues, thus increasing proba-
bility of packet loss and decrease of throughput. We
will discuss this requirement in section III.

It show that the standard TCP congestion avoid-
ance based on AIMD(1, 0.5) algorithm is too slow for
LFNs. There are proposals to modify TCP conges-
tion avoidance by adjusting its aggresiveness and re-
sponsiveness according to the outstanding TCP win-
dow size [3] or to use another congestion control al-
gorithm [4]. However, the problem of filling up router
queues is inherent to AIMD algorithm, which is re-
active by nature. We believe that higher performance
can be achieved by combination of AIMD with win-
dow moderation, as discussed in section III.

II. L INUX TCP PERFORMANCE

It appears that TCP implementation in some com-
modity operating systems include their own modifica-
tions with respect to the specification in RFCs. These



modifications should be considered when using these
operating systems for performance tests and when
studying new mechanisms designed for the use in pub-
lic Internet. Influence of these modifications on net-
work performance can probably be stronger that var-
ious subtle improvements to TCP congestion control
proposed in literature.

As we mentioned, we concentrate in this paper on
the Linux operating system. Linux kernel 2.2 behaved
closely to the specification in RFCs. Beginning with
the Linux kernel 2.4 a lot of differences from the spec-
ification have been introduced. Most differences are
very poorly documented only within the kernel source
code. In this section we describe the most important
features specific to Linux that influence TCP perfor-
mance.

A. Sizes of TCP buffers

Actual sizes of sending and receiving TCP buffers
are different from values supplied tosetsockopt()
call with SOSNDBUFand SORCVBUFsocket op-
tions as well as from values reported bygetsockopt()
call. This should be considered when setting buffer
sizes. The internal arithmetics applied by Linux to
buffer and winsow sizes is illustrated in Fig. 1. Parts
in bold face indicate changes in Linux 2.4 to Linux
2.2. The values supplied tosetsockopt() call
are first multiplied by two and stored in internal vari-
ables. The content of these variables is returned by
getsockopt() call. If setsockopt() was not
called, system default values (see below) are copied to
internal variables. In Linux 2.2 the content of these
internal variables is again divided by two before set-
ting the real buffer sizes. Division by two is probably
legacy from old TCP implementations that used 16-
bit signed variables for window arithmetics. And mul-
tiplication by two is probably legacy of patching the
previous version to behave as expected. In Linux 2.4
division by two was removed. The real buffer sizes
are therefore twice as specified bysetsockopt() .
When an application does not explicitely request
buffer sizes by callingsetsockopt() , the kernel
uses heuristics to choose system default values based
on net/ipv4/tcp [rw]mem kernel variables and
current memory consumption.
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Fig. 1. Internal arithmetics applied by Linux to TCP buffer
and window sizes

B. Application buffer clamping

In Linux 2.4, the advertisedrwin is computed from
the internal variable described in the previous section
usingtcp adv winscale kernel parameter as: in-
ternal variable∗(1−1/2tcp adv winscale). The remain-
ing part of the receiving buffer is clamped as applica-
tion buffer. The purpose is to smooth out advertised
rwin by putting part of the received data waiting to
be read by application out of the receiving buffer.

C. TCP parameter cache

Certain TCP runtime parameters such asssthresh
are cached for 10 minutes for individual destination
IP addresses and used for subsequent connections to
same destinations in an attempt to prevent slow start
overshooting available bandwidth at the beginning of
the connection. In reality, lowssthresh may be
consequence of one connection going particularly bad
due to temporary overflow of router buffers and may
not reflect real available bandwidth of the particular
network path. With lowssthresh , subsequent con-
nections prematurely switch from slow start to con-
gestion avoidance. The sender congestion window
then increases very slowly, resulting in poor through-
put for short connections. We can detect this effect by
monitoringssthresh andcwnd using the web100
kernel extension or by observing development of the
sender outstanding window from the captured packet
headers. As shown in Fig. 2, the outstanding window
stops increasing sharply whenssthresh is reached.
We can clear TCP cache with commandecho 1 >
/proc/sys/net/ipv4/route/flush .



Fig. 2. Outstanding window development with low initial
ssthresh
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Fig. 3. Throughput for different TCP windows and
txqueuelen

D. TxQueueLen

Fig. 3 illustrates achieved throughput over one of
our testing network paths for different TCP win-
dow sizes. The connection was between two PCs
with Gigabit Ethernet interfaces located in Cesnet and
Uninett, going over 11 hops of the Géant network,
consisting of Gigabit Ethernet and OC-48 circuits.
The window sizes were the real ones after applying
the internal arithmetics.

Obviously, larger windows resulted in higher
throughput. However, beginning with 2 MB windows
throughput started to decrease. This effect may have
several reasons. One of the most significant factors
is the txqueuelen parameter, which sets the number of
packets that can be stored in the buffer between the op-

erating system and the network adapter. When an ap-
plication needs to send a large batch of data and when
allowed by current TCP windows, this large batch of
data is submitted to the network adapter queue to be
sent to the network. The network adapter can send
packets only at the speed of its physical interface, for
example 1 Gb/s for Gigabit Ethernet. When this queue
becomes full, the operating system context is switched
to another process. The network adapter can continue
sending packets as long as the network adapter buffer
is not empty. After that it stops sending packets and
waits until the context is switched back to the send-
ing process. With the standard 100 Hz Linux system
timer, a process can get context for up to 10 ms. If the
network adapter buffer should supply data at 1 Gb/s
speed for 10 ms in 1500-byte packets (high volumes
of data are normally sent in large packets, so we do
not need to consider smaller packets, 1500 bytes is the
largest IP packet which can be carried in a standard-
ized Ethernet frame) we must increase the buffer size
to at least 1 Gb/s * 10 ms / 1500 bytes = 833 packets.
As illustrated in Fig. 3, increasing txqueuelen to 1000
significantly increased throughput for windows set to
4 MB and 8 MB.

E. Runtime window moderation

During the connection, the kernel tries to moder-
aterwin advertised by the receiver as well ascwnd
computed by the sender. The advertisedrwin grows
from a small initial value to the size of the receiv-
ing buffer (without the clamped application buffer).
This growth is driven by data being received. If little
data is received,rwin grows slowly. Once the win-
dow reaches its nominal value it stays there even if no
packets are arriving unless there is a shortage of mem-
ory. The computedcwnd is moderated so that it does
not grow too much over the outstanding window. The
purpose of this moderation is to prevent large packet
losses, which could be caused by a sudden burst com-
ing after a period of little sender traffic, whencwnd
was allowed to grow unimpeded andrwin was also
high. However, this moderation is insufficient to pre-
vent filling router queues, which can result in unnec-
essary packet drops. We will discuss window modera-
tion requirements in more detail later.



F. Fast path, slow path

The kernel can process packets in two modes - fast
path and slow path. If the connection is purely unidi-
rectional, that is only pure ACKs are sent in one di-
rection and data segment in the other direction, fast
path is used. If the connection is bidirectional (one
data segment sent in the other direction is sufficient),
the kernel switches to slow path, which can influence
performance.

III. F INDING OPTIMAL WINDOW SIZE

Traditional advice on configuring TCP sender and
receiver buffers is that they should be large enough to
allow TCP windows at least equal to the pipe capacity
so that the connection is not constrained by small win-
dows and can utilize the available bandwidth. We will
show that there are several reasons why it is impor-
tant not to allow too large TCP windows. We base our
analysis mostly on observations of connection traces
captured by tcpdump run on a separate PC connected
to a switch port configured to mirror outgoing and
incoming packets of the sending PC. We found that
when tcpdump is run directly on the sending or re-
ceiving PC, it either loses lots of packets or it influ-
ences the monitored connection, depending on its pro-
cess priority.

The question is what is the pipe capacity? It is the
sum of the “wire pipe” capacity given by the prod-
uct of available bandwidth and round-trip time of the
empty network plus the amount of buffer memory of
the TCP receiver and of the free buffer memory of all
routers along the route from the sender to the receiver
and back. Increasing TCP windows above the size of
the wire pipe capacity does not increase throughput.
The TCP sender can already send packets at the avail-
able bandwidth and further enlargement of TCP win-
dows just increases the volume of outstanding data at
the expense of filling up router queues. As the avail-
able bandwidth is likely to fluctuate due to changes
in cross traffic, TCP windows slightly larger than the
wire pipe capacity can ensure that the TCP sender
will never need to stop sending packets to wait for ac-
knowledgements. And we have still good chance that
router queues will keep up with peeks in cross-traffic,
preventing losses and allowing for steady throughput.

When TCP windows are significantly larger than
the wire pipe capacity, filled-up router buffers increase
probability of losses due to cross-traffic. Moreover, as
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Fig. 4. Multiple losses caused by too large TCP windows

the large volume of data moves among router queues,
follow-up losses can occur on routers farther along the
route when the TCP connection was in the early part of
its congestion avoidance cycle or even in the slow start
phase. This causesssthresh to be halved multiple
times resulting in very long congestion avoidance and
poor throughput. An example of sequence number de-
velopment of a connection when these multiple losses
happened is in Fig. 4. This effect can occur even with
little or not fluctuating cross-traffic. When we config-
ure large TCP buffers, the sender congestion window
will eventually grow to fill up router queues. TCP is
self-clocking in a sense that it can send out packets
only as fast as acknowledgements come from the re-
ceiver. It is also self-regulating, meaning that a larger
round-trip time implies slower congestion window in-
crease. However, it appears that with a large window
advertised by the receiver, the sender can overshoot
the available bandwidth too much and the decrease in
sender speed comes too late to prevent congestion and
loss. When other connections use part of the router
queues to fill up their limits for TCP windows, this
volume of data remains in the queues and reduces
available buffer space. The sender outstanding win-
dow can be limited either by manual configuration of
TCP buffers on receiver or sender side or by dynamic
moderation of the receiver-advertised window or the
sender-computer congestion window.

For manual configuration of TCP buffers we need
to know available bandwidth of the particular network
path. If we do not want to use intrusive bandwidth
measurement such as with iperf, we can try an avail-



able bandwidth estimation tool based on analysis of
delay variation of testing packets. Currently the only
publicly available tool of this class is pathload [5]. It
is distributed with built-in constants limiting its oper-
ation to 120 Mb/s. These constants can be tweaked to
allow operation up to the full Gigabit Ethernet speed.
However, our experience shows that pathload output
is not reliable. Depending on network conditions, the
produced results fall into three categories: i) it cor-
rectly iterates with variable-rate packet chains to the
realistic available bandwidth estimated with 50 Mb/s
precision (when that happened on our network path,
the indicated available bandwidth was in the range of
850-1000 Mb/s, probably periods of lighter load), ii)
it loses lots of packets even in low-rate chains and
falsely states the available bandwidth in the range of
50-100 Mb/s and iii) it does not detect any delay in-
crease even in high-rate chains and states an unlikely
available bandwidth of 1000 Mb/s. We can make mul-
tiple measurements to increase probability that the re-
sult is within a specified range.

There are several works that try to configure TCP
buffer and window sizes automatically [1], [8], [9].
The goal of these projects was to save memory by
not allocating buffers much larger than needed to in-
clude the outstanding window or to set the receiver-
advertised window or the sender-computed conges-
tion window so that the connection is not limited by
them. Linux 2.4 now also by default includes a sort
of buffer autoconfiguration and window moderation
as described in section II. The goal of this modera-
tion is to prevent sudden bursts that can cause losses,
for which purpose it is effective.

However, what we need is window moderation that
will keep the outstanding window only slightly above
the wire pipe capacity. In principle, this can be
achieved by moderating either the receiver-advertised
window or the sender-computed congestion window.
It is probably easier to do that on the sender. We can
check initial RTT of the first SEQ-ACK pairs during
connection handshake and during the start of send-
ing data. This RTT will be the sum of empty-pipe
RTT and waiting caused by data of other connections
queued in router buffers. We can then observe cur-
rent RTT during the connection. If it tends to increase
significantly above the initial RTT we should stop in-
creasingcwnd. An example of development of RTT
and outstanding window of a connection with too large

Fig. 5. Development of RTT for too large TCP windows

Fig. 6. Development of outstanding window for too large
TCP windows

TCP windows as shown in Fig. 5 and Fig. 6, respec-
tively. RTT measured by ping program was 40 ms.
Available bandwidth was at most 1 Gb/s (our inter-
national link has installed bandwidth of 1.2 Gb/s and
router statistics showed that the current load was about
200 Mb/s). Therefore, the empty pipe capacity was
at most 5 MB. Large TCP windows allowed the out-
standing window to grow up to 8 MB and RTT was
as high as 110 ms. Some peaks were caused by fluc-
tuating cross traffic. After about 6 seconds from the
connection start a burst of packets has been lost caus-
ing slow start.



IV. SSH PERFORMANCE

It is nice when we achieve high throughput with
iperf, but people are not transfering their files with
iperf, they use some file transfer application. One
of the most popular is scp, which uses an authenti-
cated and encrypted channel established by ssh. We
found that the file transfer speed with scp over a long-
distance network was much lower than TCP through-
put measured by iperf with the same TCP window over
the same network path. For example, on our testing
path from Cesnet to Uninett, we achieved throughput
of 250 Mb/s with iperf using 2 MB windows. The scp
file transfer initiated right after iperf achieved through-
put of 10.4 Mb/s. Many people tend to blindly blame
high CPU load caused by data encryption. We checked
CPU load during this file transfer and found that it was
approximately 9% on both sides of the connection.

The problem is in internal window maintained by
the ssh protocol. The corresponding part of the pro-
tocol operation is illustrated in Fig. 7. Applications
such as scp or sftp just use a channel created by ssh,
so the problem is common to all these applications.
The ssh protocol puts data to internal packets, which
are by default 32 kB big. Certain maximum num-
ber of these internal packets can be outstanding at
any given time, creating an internal application win-
dow. Default size of this window is four internal
packets, that is 128 kB. Therefore, throughput is by
default always lower than 128 kB / RTT. The size
of internal packets is set in ssh code by compiler-
time constant CHANx PACKET DEFAULT, where
x can be SES, TCP or X11 for different chan-
nel types. Similarly, the size of the internal win-
dow is set in ssh code by compiler-time constants
CHAN x WINDOW DEFAULT.

Sequence number development for ssh connec-
tion with default internal packets and windows over
40 ms RTT with 2 MB TCP windows is illustrated
in Fig. 8. The TCP sender could not utilize the
available receiver-advertised window because of slow
application-level communication. When we increased
the internal window to 40 internal packets (1.25 MB),
throughput increased to 48 Mb/s with CPU load in-
creased to 45%. When we increased the internal win-
dow to 80 internal packets (2.5 MB), throughput in-
creased to 88 Mb/s with CPU load increased to 85%.
Sequence number development of this connection is
illustrated in Fig. 9.
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V. FUTURE WORK

We are studying implementation of more appropri-
ate sender-computed congestion window moderation.

We intend to do comparison tests to evaluate per-
formance of TCP window moderation combined with
dynamic AIMD adjustments.

We are working on QoS and performance monitor-
ing application running on top of the SCAMPI [10]
architecture that will help to identify selected perfor-
mance related problems.

VI. CONCLUSION

• Too large TCP windows may require other configu-
ration changes for good performance and may deliver
worse performance than smaller windows.
• Some common networking applications such as ssh
have significant performance problems that must be
resolved at the application level.
• The influence of configuration of the network-
ing subsystem on end hosts and the influence of
implementation-specific features present in commod-
ity operating systems on the resulting throughput
and TCP behaviour can be significant and sometimes
stronger than the influence of various enhancements of
the TCP congestion control described in literature.
• PERT (Performance Enhancement and Response
Team) [11] initiative has started. Can it be the place
for interaction of research people with software devel-
opers, equipment manufacturers and other communi-
ties involved in high-performance networking?
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