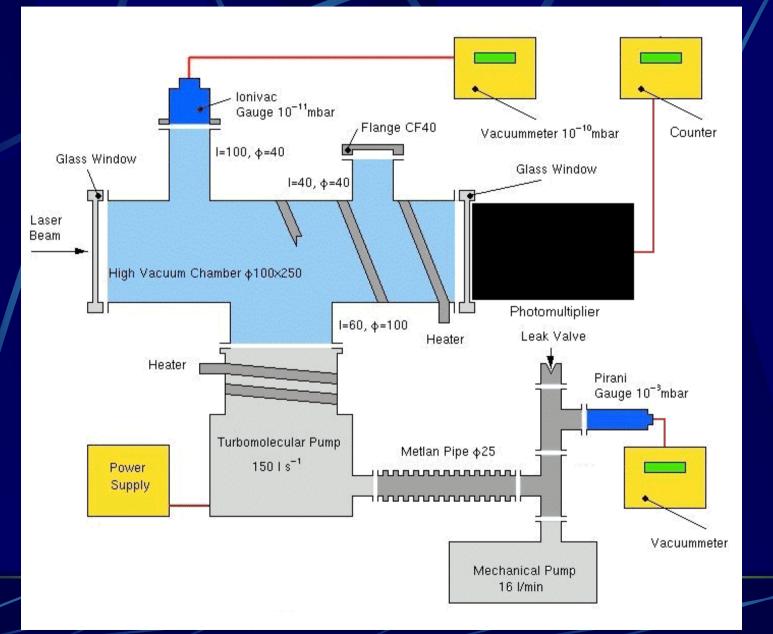
Process monitoring and control using Internet and cellular telephony

Presenter: dr. Mario Stipcevic


Authors: dr. Mario Stipcevic & Kresimir Jakovcic, Rudjer Boskovic Institute, Zagreb

Talk given at CUC 2002, September 25-27, Croatia

Technical problem

- A scientific experiment was built at the Rudjer Boskovic Institute
- The experiment needed to be operational for ~100 days without interruption
 - Too few people to organize shifts
- The experiment could not be run in a completely automatic way: occasional interventions from operator were needed
- Experiment needed to be run during vacations
- Fortunately experiment could have been run without human intervention

The experiment

Solution 1: the Internet

We have built our own PC controllable interfacing hardware:

- Master serial In/Out box with 56 input and 32 output bits
- ADC with 13 channels 4 ranges each
- Sensor box for measuring temperatures
- Gated counter for counting events
- Z-box for power-failure safe operation with controllable switches and power regulators
- This hardware controls the experiment

A steering program made of CGI executables, HTML forms and a WEB server makes possible to monitor and control the experiment over the WEB

The steering program

- Specific routines (primitives) communicate to the hardware
- The steering program makes all these to work as a whole and to perform specific task(s) upon a request from the operator (scientist)
- A steering program is an interface between a scientist and the experiment - it makes use of graphics, buttons and input fields to communicate

A steering program is not meant to make complex data analysis - this is done by other programs

Ed	w ⊻	iew <u>G</u> o	Communicator						.0.	100					-
Ba) ck	Forward	3 Reload	Home	Search	Netscape	e Pint	Security	Shop	Skop.					N
1/2.	aar/		10.000		10000	-		100000	- 0.27						
		Counts	Time	s]	Time		Date	T _{PM}	Т2	I3	T_4	TAMB	p [mba	ar] Mo	de
-		0	. 0.0	1	-16/36:40.62	05-	06-2002	79.3	34.17	198.4 *	29.7	22.2*	9.6e-11	U	· · · ·
			60.3		1637,40.91	05-	06-2002		341 1	198.4	29.5	22.0	9.6e-11		18.1
			120.6		1638,41,20	05-	06-2002		34,3	198.4	29.7	22.0	9.5e-11		1997 - B
			180.9		1639(41.49	05-	06-2002	. 793	34.1	198.4	29.5	21.8	9.5e-11	В	
					16:40:41.78		06-2002		343	198,4	29.5	21.8	9.6e-11		1.00
			, 300.1		16:41:40.70	03-	06-2002		34.1	198.4	- 29.7	21.8	9.5e-11		
		0.	_ 360.4		16:42:40.99	<u>а</u> 05-	06-2002		34.1	198.4	29.5	21.8	9.6e-11		
			420.7		16:43:41:28	05-	06-2002	79.3	341 -	198.4	29.7	21.8	9.6e-11		75
			481.0		16:44:41.00	05-	06-2002		341	198.4	29.7	22.0	9.6e-11		and -
			541.3		16:45:41:29	.05-	06-2002		34.3	198.4	29.5	22.0	9.6e-11	B	a. 11
			600.9		16,46,41.54	05-	06-2002		343	198.5	29.7	21.8	9.6e-11		
			661.2		16:47:41:83	05-	06-2002		34.3	198.5	29.7	22.0	9.6e-11		
			720.1		16:48 40.76	05-	06-2002		343	198.5	- 29.5	22.0	9.6e-11		
		0.	780.4		16:49:41.05	05-	06-2002	79.3	34.1	198.5	29.7	21.8	9.6e-11		
- 1	1		a 1		s. 19	Ispis	uje se z	apis : zaj	pis630	.dat 🐋		a	1		1
ſ					 [1000	ist, a					*	Leo.	-	
			Broj tocak	a. :		1000			Perio	d uzerko	vanja	s):	60		
Redsslied uzmikevenia background=1, signal=1, wait=0															
	0	190724	C1			1.0		m	200	- 200	C1			77 4	
	2	tart	Stop	2	tatus	AL	DCC	Ten	ıp	Log	mes	E-I	Mail	Heat	
							I	IStop							 Market

COMPUTER	UP	(UP/DOWN)	-dit
LASER	OFF	(ON/OFF)	
MECH. PUMP STATUS	PUMPING	(PUMPING/OFF)	
TURBO PUMP STATUS	PUMPING	(PUMPING/OFF)	
COOLING	ON-LINE	(ON-LINE/OFF-LINE)	
PM HIGH VOLTAGE	900 V		
PM TEMPERATURE	27.2 C		
HEATERO TEMPERATURE	28.97 C		
HEATER1 TEMPERATURE	29.08 C		
T4 TEMPERATURE	30,85 C		
T6 TEMPERATURE	17.33 C		
LASER POWER SWITCH	ON	(ÓN/OFF)	
PUMPS POWER SWITCH	ON	(ON/OFF)	
HEATERO PWR SWITCH		(0-15)	
DATA TAKING STATUS	S (E	ACK/SIGN/STOP/HEAT/WAIT)	
RUNNING SINCE	02:04:44 04-Sep-2002		
FILE & LAST POINT	zapis791.dat, 463		
MODE REPEAT PATTERN	signal=10		
GAUGE PRESSURE	0 mbar		
ROOM TEMPERATURE	18.0372 C		
TIME/DATE	09:47:45 04-Sep-2002		

Temperatures page

- It is possible to monitor all measured temperatures instantly
 - A set of thresholds defines automatic actions (ex. over-heat protection)

	T [⁰ C]	T _{thr} [⁰ C]
T _{PM}	27.7	-2.3
• T ₂	29. 7	84.9
T ₃	29.4	25.2
• T ₄	30.0	12.3
T _{AMB}	17.5	

ADC voltages page

CHANNEL	RANGE	VALUE	i di	CHANNEL	RANGE	VALUE
σ	.0	0.497		8	0	0.907
1	0	0.514		9	2	0.003
2	0	0.512		10	3	5.025
3	. 0 '	0.517		" 11	0.	0.001
. 4	1	1.379			0	0,410
5	2	2.271	14 A	13	0	0,414
6	1	1.653		14	2	0.004
7	1	1.531		15	0	-0.001

SMS Alarms & Reports

 E-mail
 Time

 38598800901@cronet.tel.hr
 08:00 12:00 19:00

 Stipcevic.Mario@irb.hr
 12:10

 Kresimir.Jakoveic@irb.hr
 13:30 21:00

Action	E-Mail	Kresimir.Jakovcic@irb.hr	0.1
Add	Times	13:30 21:00	Submit

WEB solution - strong points:

- an experiment or a process may be controlled from *almost* anywhere
- a lot of data and graphics can be displayed
 WEB solution weak points:
- the online Internet connection is needed for the server side
- the offline Internet is sufficient for the client side to controll the experiment, but then alarms aren't possible (1-wayness)
- both online and offline Internet are poorely available in Croatia, especially for people who are travelling
- a notebook PC + GSM + modem -> not practical, expensive slow. (Future solution - Web capable mobiles ?)

We tried to overcame the weak points by the Solution 2

Solution 2: SMS Robot

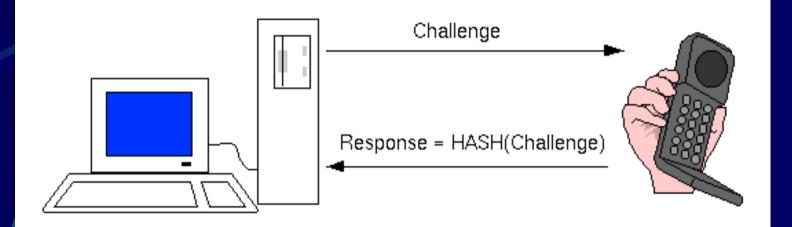
- SMS Robot is a virtual being (program) who has an e-mail account on the local computer
- Relays messages to the steering daemon
 A set of alarms can be preset
 Must be able to reply

General incoming message format: command [parameter list] [authentication]

SMS (cellular phones) solution - strong points:

- Cellular network signal available virtually everwhere
- Enables 2-way communication
- Practical: small & light, can be used at any place and discretely, enables great autonomy (~5 days without rech.)

SMS (cellular phones) solution - weak points:


- Poor displaying capability -> no graphics (yet), text only
- Only small data transfer possible
- Sometimes unreliable

Security

Web pages are secured by a password and the https

- SMS messages are authenticated by a challengeresponse protocol: at the end of Robot's message there is a challenge used to authenticate the next request
- For the first request or if the chain gets broken -> send an empty message to receive a challenge
- SMS authentication may be turned ON and OFF

SMS authentication scheme

- Server sends a random Challenge
- Client responds by hashing it Response seems random
- The HASH function is secret
- (Future development -> use of a token)

Conclusions

- Existing WEB tools can be used to efficiently construct programs for management of processes
- Such programs can be easily interfaced to e-mail capable mobile phones by means of an SMS Robot
- This Internet technology should be preffered over classical programming because it offers automatically the possibility to manage the process from a distance

HOWEVER, the Internet still needs to be much more available