
CUC 2001 1

Virtual Laboratories

Ivan Marsic
Department of Electrical and Computer Engineering

and Center for Advanced Information Processing (CAIP)
Rutgers — The State University of New Jersey

Piscataway, NJ 08854-8058 USA
http://www.caip.rutgers.edu/~marsic

CUC 2001 2

Contents
! Introduction and Requirements
! Java Beans (½ hour)

"Common software design patterns
"Events, properties, persistence, and introspection
"Levels of abstraction

! Extensible Markup Language (XML) (½ hour)
"Concepts and examples
"Extensible Stylesheet Language (XSL)
"Bean Markup Language (BML)

! UML Design for Virtual Laboratories on the
Internet (¾ hour)
"Analysis
"Design

Total duration: 2 hours (17:30 – 19:30)

CUC 2001 3

Goals

• Web-based Virtual Laboratories
° Distance education

° Available any-time, any-place, any number of repetitions

° Learn and practice in spite of making errors

• Development & Deployment Dynamics
° Short-term goal: supplement for actual labs

(preparation & rehearsal)

° Long-term goal: virtual labs substitute actual labs

• Development Emphasis
° Look-and-feel Fidelity vs. Learning Concepts

CUC 2001 4

Related Work

Existing Interactive Virtual Labs:
• Non-Web-based or require plug-in

° California State University’s Center for Distributed Learning

° The University of Melbourne’s Science Media Teaching Unit

° Edmark, Inc.

° Olympus America Inc. and The Florida State University

• Java Applets
° Hughes Medical Institute: Bio-Interactive

° University of Colorado (Boulder): Physics 2000

° TeleLearning Network of Centers of Excellence

CUC 2001 5

Related Work (Cont’d)

Summary:
• Not Web-based or require plug-in

° Not platform-independent Java Applets

• No generic software architecture
• Interaction by “clicking” rather than direct

manipulation
• “Linear” interaction

° All users have the “exact” same lab experience

° Our goal: Users have different experience, but learn the same

concepts

CUC 2001 6

Part I

Java Beans

CUC 2001 7

Java Beans: Main Features
!Span from a simple button to a full-fledged

spreadsheet application
!Uniform attribute (property) access
!Persistence support
!Event model
!Self-description, introspection, and reflection
!Customization and combination at

development time
!Development tool support
!Visual representation

Bean: A reusable
software component
that can be manipulated
visually in a builder tool.

CUC 2001 8

Java Beans: Paradigm
! All beans must implement certain interfaces and classes, so

that a certain behavior can be expected, e.g., for persistence
! The classes and methods of all beans follow certain design

patterns for naming and signatures, so that this can be
analyzed automatically by an introspector using reflection

! Java beans may provide explicit meta-information for
development support (classes that describe the bean)

! There are standard mechanisms for connecting beans
together (by events)

! Beans may include a graphical presentation, e.g., a button
! There are standard ways for customizing beans, even

graphically or using custom wizards
Thus all beans look in a way the same and so you may buy beans
and plug all of them together interactively using a GUI beans
development tool. CUC 2001

CUC 2001 9

Example: Mapping Application
Development
Environment

Application
View

CUC 2001

CUC 2001 10

Parts of a Bean
A bean consists of:
! Properties: attribute values that may be stored persistently;

represented by getter/setter methods
! Events: State changes that other components may listen for

by registering listeners
! Methods: Arbitrary public methods

All these methods follow naming and typing patterns, eg.

An introspector identifies methods (pairs) following this
pattern.

Development tools then allow to customize the beans
using this information.

public TYPE getPROPERTY() {…}
public void setPROPERTY(TYPE x) {…}

All properties are accessed by
methods named “get…” and
“set…” with these signatures.

CUC 2001 11

Java Event Model

 : java.awt.Button : MyButtonListener
1: Register as a listener

2: Fire event

Implements
java.awt.event.ActionListener

Fires an
event object

CUC 2001 12

Events Handled by Beans
Events that an object may handle are expressed
through methods that take a parameter whose type
is a subclass of java.util.EventObject (*)

General signature pattern for events of type Type:

All events have to inherit from
java.util.EventObject (*)

public void eventHandler(MyEvent e) {…}

public void methodName(Type e) {…}

Class EventObject:
The object on which the event initially
occurred:

Object getSource()

CUC 2001 13

Registering Event Listeners
The administration of event listeners has to be
synchronized:

General signature pattern for event listener
registration:

All event listeners have to implement
java.util.EventListener and follow the
naming pattern TYPEListener, where TYPE is
the event type.

private java.util.Vector listeners = new java.util.Vector();
public synchronized void addMyListener(MyListener l) {listeners.addElement(l);}
public synchronized void removeMyListener(MyListener l) {listeners.removeElement(l);}

public synchronized void addTYPE(TYPE listener);
public synchronized void removeTYPE(TYPE listener);

CUC 2001 14

Dispatching Events to Listeners
When dispatching events to listeners, race
conditions have to be considered:

private void fireAction() {
Vector targets;
synchronized (this) { // could use Enumeration

targets = (Vector) listeners.clone();
}
MyEvent evt = new MyEvent(this, …);
for (int i = 0; i < targets.size(); i++) {

MyListener target = (MyListener) targets.elementAt(i);
target.eventHappened(evt);

}
} CUC 2001

CUC 2001 15

Bean Properties

! Simple: single-valued, get and/or set
methods

! Indexed: multi-valued (array) with indexed
access

! Bound: inform other beans about changes of
property values (change event)

! Constrained: ask other beans if changes of
property values are OK (veto event)

CUC 2001 16

Getting Design Information
Design tools working with and on beans need information
about the bean to be able to display its properties, events,
methods, and to customize it for an application (interaction
methods). The Introspector class uses two mechanisms for
providing this information:
! Explicit by introspection: A BeanInfo class supplements a
Bean class with explicit information about the bean.
! Implicit by reflection: The reflection capabilities of Java
are used to analyze the names and parameters of the Bean
classes and methods.
Example:
classes with explicit info

class without explicit info

MyBean1

MyBean11

MyBean111

MyBean1BeanInfo

MyBean11BeanInfo

java.beans.BeanInfo

CUC 2001 17

Introspection and Reflection

! Signature patterns by method naming (get…, set…) and/or
typing (subtypes of EventListener, …)

! Implementation relationships and subclasses (Serializable,
EventObject, …)

! Related class names (MyBean, MyBeanBeanInfo, …)

! Explicit meta-information (given my MyBeanBeanInfo, …)

! Information in JAR-files (JavaBean: True, …)

MyBean b = Beans.instantiate(null, “MyBean”);
BeanInfo bi = Introspector.getBeanInfo(b.getClass());

The introspector, the development tools and the Java
environment introspect beans using reflection:

CUC 2001 18

Levels of Abstraction
Example of a composite bean:

RotateOccurred

Circle
Rotate

Translate TranslateOccurredPolygon

Translate TranslateOccurred

Move

Stop

Car

Note: The composite bean may have different
events than the constituent beans.

CUC 2001 19

(Re-)Construction of Beans
Beans may be aggregated and may need context
information.
Therefore: Do not (re-)construct a bean using the
new constructor.
Instead, use Beans.instantiate().
! Creation of a bean class MyBean in package MyPackage:

! Recreation of a bean from a serialized form in file
MyBeanPackage.MyBean1234.ser:

ClassLoader cl = this.getClass().getClassLoader();
MyBean c = (MyBean)Beans.instantiate(cl, “MyBeanPackage.MyBean”);

ClassLoader cl = this.getClass().getClassLoader();
MyBean c = (MyBean)Beans.instantiate(cl, “MyBeanPackage.MyBean1234”);

CUC 2001 20

Application and Development Levels

Application
Level

Application GUI

Application Logic

Self-Description

Customizer GUI

Development
Level

visible
bean

minimal
bean

self-descriptive
bean

customizable
bean

Visible beans (with GUI) have to inherit
from java.awt.Component

CUC 2001 21

Development and Deployment Process
MyBean.java

MyBeanBeanInfo.java

MyPropertyEditor.java

MyCustomizer.java

javac

MyBean.class

MyBeanBeanInfo.class

MyPropertyEditor.class

MyCustomizer.class

jar Manifest
File

jar
MyBean1.ser

MyBean2.ser

Helper.class

MyBeanPackage.jar
• MyBean class
• MyBeanBeanInfo.class
• MyPropertyEditor.class
• MyCustomizer.class

Bean Development Kit
• instantiate beans
• customize beans
• serialize beans

MyBean1 MyBean2MyApplication.jar
• MyBean class
• MyBean1.ser
• MyBean2.ser
• Helper.class

java
MyBean1

MyBean2

CUC 2001 22

JavaBeans Across Platforms

! Unfortunately, JavaBeans are not
supported on Appliances, e.g., J2ME

! However, JavaBeans Design
Patterns still very useful for cross-
platform development
" Event Model

" Properties

" Introspection and Reflection ?

CUC 2001 23

Part II

Extensible Markup Language
(XML)

CUC 2001 24

XML Recap

!Method for putting structured data in a (text)
file
"HTML is an implementation of SGML
"XML is a subset of SGML

!XML is text but not meant to be read
!XML is a family of technologies

"XML: base specification
"XSL/XSLT: transformational language
"XLink: describes logical links between different elements
"XPointer/XPath …

CUC 2001 25

Understanding XML Documents

!Parsing:
" tokenizer + lexical analyzer

!How XML parsers work:
"XML is a Markup
"Delimiters “<” “>” “</” “/>” etc.
"Tags are identified as nodes, which are objects

conforming to interfaces recommended by W3
"Attributes are used to define properties of nodes

!Validation:
"Document Type Definition (DTD)
"Type of XML docs

• Well formed
• Valid

CUC 2001 26

XML Parsers

!Types:
"DOM (Document Object Model)

• Tree structure is maintained
• Actual tree representation of XML doc in memory exists for

manipulation
• Supported by commercial browsers

"SAX (Simple API for XML)
• Event based
• No complete representation exists at any time
• Good for large XML documents / small terminals

!Libraries available from:
"XML4J from AlphaWorks IBM(XML for Java) very popular
"Xerces: joint effort, mainly Apache/AlphaWorks
"JXML, Sun, Microsoft, Oracle etc.

CUC 2001 27

SAX Parser: Java Example
Initiating the parser
. . .

Parser parser =
ParserFactory.makeParser
("com.sun.xml.parser.Parser");

parser.setDocumentHandler(new
DocumentHandlerImpl());

parser.parse (input);

. . .

DocumentHandler Interface

public void startDocument()throws
SAXException{}

public void endDocument()throws
SAXException{}

public void startElement(String name,
AttributeList attrs) throws
SAXException{}

public void endElement(String
name)throws SAXException{}

public void characters(char buf [],
int offset, int len)throws
SAXException{}

<document>

<element attr1=“val1”>

This is a test.

</element>

<element attr1=“val2”/>

</document>

startDocument

startElement

characters

endElement

endDocument

Event triggering in SAX parser:

Document
Handler

CUC 2001 28

DTD: Document Type Definition

!Lets define your own markup language
!Specifies constraints on the valid tags

and tag sequences that can be in the
document
!Defined as an XML document itself
!Includes:

"local subset, defined in the current file
"external subset, which consists of the definitions

contained in external “*.dtd”

CUC 2001 29

DTD Example

<?xml encoding="UTF-8"?>

<!DOCTYPE mydoc [<!ENTITY % first SYSTEM "first.dtd"><!ENTITY %

second SYSTEM "second.dtd"><!ENTITY% third SYSTEM

"third.dtd">%first;%second;%third;]>

<!ELEMENT APPLICATION (VIEW*,MODEL+)+>

<!ATTLIST APPLICATION NAME CDATA #IMPLIED>

<!ELEMENT MODEL (DATAMODEL*,DATA_OPTIONS*)*>

<!ELEMENT DATAMODEL EMPTY>
. . .
? ≡≡≡≡ can be skipped
* ≡≡≡≡ can be skipped or included one or more times
+ ≡≡≡≡ must be included one or more times

External DTD

Element definition

Attribute listing

CUC 2001 30

DOM: Document Object Model
! Tree form representation of a Document, even if it is a non-

document form database
! Converts an XML document into a collection of objects in

your program. You can then manipulate the DOM.
" Mechanism is also known as the "random access" protocol, because

you can visit any part of the data at any time. You can then modify the
data, remove it, or insert new data.

! Different node types
" Root node
" Text node
" Element node (with attributes)

! Interfaces defined in IDL
" Implemented differently on different platforms

(http://www.w3.org/DOM/faq.html#what)

CUC 2001 31

DOM Interface Example
• Hierarchy of Node objects that also implement other, more specialized interfaces

• Node types, and node types they may have as children, are as follows:
Document -- Element (max 1), ProcessingInstruction, Comment, DocumentType
DocumentFragment -- Element, ProcessingInstruction, . . .
DocumentType -- no children
Element -- Element, Text, Comment, ProcessingInstruction, . . .
Attr -- Text, EntityReference
. . .

• Node Description in IDL:
– Interface Document:
Node { readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;
Element createElement(in DOMString tagName)

raises(DOMException);
DocumentFragment createDocumentFragment();
Text createTextNode(in DOMString data);
Comment createComment(in DOMString data);
NodeList getElementsByTagName(in DOMString tagname);

};

CUC 2001 32

XSL Concepts

! XML is not a fixed tag set (like HTML)
! XML by itself has no (application) semantics
! A generic XML processor has no idea what is “meant” by the

XML
! XML markup does not (usually) include formatting

information
! The information in an XML document may not be in the form

in which it is desired to present it
! Therefore there must be something in addition to the XML

document that provides information on how to present or
otherwise process the XML

CUC 2001 33

XSL

! XSL is an XML language
!Can be used for specifying the layout

of an XML document
!Can be used as a transformational

language to transform documents
from one DTD to another

! XSLT

CUC 2001 34

Advantages of Separating Content from Style

!Reuse of data; different styles

!Multiple output formats

!Reader’s preferences

!Standardized styles

!Freedom for content authors

CUC 2001 35

XSL Transformation

XML

XSL

HTML /
text /
XML

Transformation Engine
(XSL Processor)

XSL is a transformation language:

General form of a template rule:

<xsl:template match="pattern">
[action]

</xsl:template>

CUC 2001 36

XML to Result Tree
XML Source Tree XHTML Result Tree

XSLT

Serialization

Book

Title Author Chapter Chapter

SummaryTitle Paragraph

html

Text Figure

Graphic

Paragraph

Title

head body

h1 h3 div div

h2 blockquote p p

Text img

<html>
<head> … </head>
<body>
<h1> … </h1>
<h3> … </h3>
……
</body>
</html>

CUC 2001 37

XSL Example
Original XML source

<?xml version='1.0'?>
<para>This is a <emphasis>test</emphasis>.</para>

XSL stylesheet
<?xml version='1.0'?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="emphasis">
<i><xsl:apply-templates/></i>

</xsl:template>

</xsl:stylesheet>

Resultant XML source
<?xml version="1.0" encoding="utf-8"?>
<p>This is a <i>test</i>.</p>

CUC 2001 38

XSL Processors

! Available XSL processors
" Xalan

! Allows one to tie the XML input to XSL
file and delivers output in the form of:
" Resultant file
" Resultant DOM tree
" Set of SAX events as per the resultant

tree

CUC 2001 39

XLink

! Allows elements to be inserted into XML documents in
order to create and describe links between resources

! Framework for creating both basic unidirectional links and
more complex linking structures (bi-directional)

! Allows XML documents to:
" Assert linking relationships among more than two resources
" Associate metadata with a link (giving a "role" to the link)
" Create link to databases that reside in a location separate from the

linked resources
! Example:

<myElement

xmlns:xlink="http://www.W3.Org/1999/xlink/namespace/
">

...
</myElement>

CUC 2001 40

Browser Support

! IE 5’s full support for XML
" Namespaces recommendation
" XML DOM

• DOM Tree available for manipulation from within the browser

! Netscape support in Ver. 5 (Aurora)
" Full information integration on desktop
" Built-in parser
" Available in the latest release (6.1)?

CUC 2001 41

Part III

UML Design for
Virtual Laboratories on the Internet

CUC 2001 42

Requirements
1. Lightweight scalable design for groupware

applications
" Rapid application development; Easy customization
" From handhelds (or cell phones) to workstations

2. Generic means for application
interoperability

" Standardized transformations between platform- or task-specific
representations

3. Automatic run-time adaptation to dynamic
environment

" Adaptation of shared data
(available resources, task requirements, user preferences)

" Account for communications breakouts and offline work

CUC 2001 43

Generalized Editor
Conceptual design: Editing structured documents

Document Folder

Act ion History

Behavior

Document.

*

+contains

*

Properties

11

+describe

User Action

+acts-on

*

+contains

*

Glyph.*

+observes/acts-on

*

*
+contains

*

11

+describe

+acts-on

CUC 2001 44

Domain Class Diagram of a
Generalized Editor

PolyGlyph
CommandEvent

target : Glyph

execute()
unexecute()
isReversible()

CommandHistory
presentCmdIndex : int

undo()
redo()
log()

0..*+commands 0..*

DomainControl

processCommand()

1 +history1

DocumentFolder
activeDocument : Document

addDocument()
removeDocument()
getActiveDocument()
setActiveDocument()

Document
selection : Vector

getSceneGraph()
getSelection() 0..*0..*

Glyph

addChild()
removeChild()
getChild()
getParent()
createIterator()
setProperty()
transform ()
grasp()
release()

<<Composite>>

0..*+children 0..*

Behavior

addTarget()
removeTarget()

CUC 2001 45

Application Logic
Collaboration diagram for creating a Glyph

 : Domain
Control

 : Command
Event

 : Glyph

 : Command
History

 : Glyph
View

Client

 :
Document

 : Document
View

2: execute()

7: log(Command)

3: create()

4: addChild(Glyph)

1: processCommand(Command)

5: createOccured()

6: create()

CUC 2001 46

Presentation Class Diagram of a
Generalized Editor

Decorat ions,
toolbars, menubar

DocumentView
currentTool : Tool

getRootChildren()
getViewpoint()
setViewpoint()
setCurrentTool()

Tool

createManipulator()

<<State>>

PresentationControl

processViewCommand()

Manipulator

grasp()
manipulate()
effect()

Editor

PolyGlyphView

GlyphView

getModel()
getShape()
getTransform()

CUC 2001 47

Presentation Logic
Collaboration diagram for direct manipulation

 : Document
View

 :
Manipulator

 : Tool

 : Command
Event

User

 : Domain
Control

Pass also argument
s necessary to
invoke the target's
method.

First traverses the scene
graph and picks the
target Glyph.

6: processCommand(Command)

2: manip := createManipulator(Glyph, Event)

4: cmd := grasp(Event)

5: create(Glyph)

3: create(Tool,Glyph,Event)

1: mouseClicked(Event)

CUC 2001 48

Technical Challenges
• Software Architecture

° Web-based (Java Applets)

° Extensible; Multipurpose; Rapid development

• Cost vs. Quality of Service
° Visualization fidelity; Interaction agents

° Responsiveness

• Framework for Application Development
° Application specification language; End-user programming

° Easy modifications

• Human Factors
° Usability

° Educational impact

CUC 2001 49

Spectrophotometer Lab

Measures the concentration of a substance in a solution and
displays the % transmittance of light received by the photocell

CUC 2001 50

Building Spectro Lab GUI

Zero Control
Dial:

Reference
Mark

Knob

Dial
PolyGlyph

Ellipse
Glyph

Line
Glyph

Scene
Graph:

CUC 2001 51

SpectroLab GUI Programming in XML
<POLYGLYPH id="zeroDial“ type="flatscape.domain.PolyGlyph2D">

<PROPERTY name="glyph.permittedUserTransform“
type="java.lang.String“ value="rotate" />

<PROPERTY name="glyph.dialType“ type="java.lang.String" value="zero
<TRANSFORMATION type="flatscape.domain.Transform2D“

value="79.0 495.0 1.0 1.0 0.0 0.0 6.5" />

<GLYPH id="zeroDialKnob" type="flatscape.domain.EllipseFigure">
<PROPERTY name="glyph.height" type="java.lang.Double" value="42.0" /
<PROPERTY name="glyph.width“ type="java.lang.Double" value="42.0" />
<PROPERTY name="fill.color" type="java.awt.Color“

value="java.awt.Color[r=150,g=150,b=150]" />
<TRANSFORMATION type="flatscape.domain.Transform2D“

value="0.0 0.0 1.0 1.0 0.0 " />
</GLYPH>

<GLYPH id="zeroDialReferenceMark" type="flatscape.domain.LineFigure
<PROPERTY name="glyph.length" type="java.lang.Double" value="13.5" /
<TRANSFORMATION type="flatscape.domain.Transform2D“

value="0.0 -13.0 1.0 1.0 -1.57 0.0 0.0"/>
</GLYPH>

</POLYGLYPH>

CUC 2001 52

Specifying Spectro Behavior

Lid

Dial

Lid Watcher

Dial Watcher

listens-to

listens-to

Photocell

acts-on

acts-on

Pilot
Lamp

Needle

acts-on

acts-on

CUC 2001 53

Spectro Behavior Programming in XML

<BEHAVIOR id=“photocell" type="biology.spectro.domain.Photocell">
<TARGET name="pilotLamp" ref="pilotLamp" />
<TARGET name="needle" ref="needle" />

</BEHAVIOR>

<BEHAVIOR id="opening" type="biology.spectro.domain.LidWatcher">
<LISTENER type="manifold.domain.PropertyValueChangeListener"

source="sampleHolder" />
<TARGET name=“lightMeasure" ref=“photocell" />

</BEHAVIOR>

<BEHAVIOR id="turning" type="biology.spectro.domain.DialWatcher">
<LISTENER type="manifold.domain.TransformListener" source="lightDial
<LISTENER type="manifold.domain.TransformListener" source="zeroDial"
<TARGET name=“lightMeasure“ ref=“photocell" />

</BEHAVIOR>

CUC 2001 54

Spectrophotometer Lab (2)

CUC 2001 55

Meiosis Lab

(1) (2) (3)

(4) (5)

CUC 2001 56

Differential Centrifugation Lab

(1) (2) (3)

(4)
(5)

CUC 2001 57

Virtual Microscope Lab

CUC 2001 58

Medical Diagnosis Support Application

CUC 2001 59

Classroom Evaluation
• Evaluation results encouraging

° Observations show that interface design choices are mostly correct

° Student surveys show that students found the labs useful

° Student performance studies currently done by Rutgers Dept. Education

• Reduced need for teacher intervention
• Students liked interactive engagement

° Increased student interest and control

° Passive viewing and listening pre-recorded lectures not popular

• Exposed design problems & missing
features
° Need for user-centered design

° Need for expert-system-based automatic help and guidance

CUC 2001 60

Conclusions

• Software architecture for rapid
development of virtual laboratories
° Used to develop five example virtual biology labs

• Easy programming and modification
° XML-based scripting language

• Labs evaluated in classroom
° Evaluation results and student comments demonstrate the value

of the labs

° Currently a supplement to physical labs

CUC 2001 61

Continuing Work

• Expert System Help
° JESS: Java expert system shell

° Servlets for performance

• Talking Faces
° Increase user engagement

• Distributed Real-time Collaboration
• Behavior Programming

° Use procedural scripting language?

• Classroom Evaluation
° Joint work with Rutgers Department of Education

CUC 2001 62

Try It!

Source code as well as publications and further
information available at:

http://www.caip.rutgers.edu/disciple/

